50 resultados para SST gradient

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold's SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold's and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold's SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold's SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold's SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of meridional variation of sea surface temperature (SST) on tropical atmospheric circulation is analyzed using Aqua-planet Experiment (APE) simulations. The meridional SST gradient around the narrow SST peak in CONTROL simulation favours a strong and single equatorial Intertropical Convergence Zone (ITCZ, defined by the maximum of zonally averaged total precipitation) in all APE models. In contrast, flat equatorial SST peak (FLAT simulation) favours split/double ITCZs flanking the SST maximum, in the majority of the APE models. Although there is reasonable agreement for SST sensitivity of ITCZ among the APE models in CONTROL, there exists disparity among them in FLAT case. Similarly, while the total and convective precipitation responses are consistent among the models, the large-scale precipitation response shows considerable inter-model variations in FLAT case. The APE intercomparison indicates that the occurrence and positioning of the ITCZ are primarily related to boundary layer moisture convergence as a response to the meridional variation of SST. Furthermore, the meridional gradient of tropospheric temperature is found to be an important factor that can influence the positioning of ITCZ. FLAT SST distribution is found to be similar to the observed distribution over the Indian region during summer season. Models that yield double ITCZs in this case simulate an easterly jet over the equatorial region (similar to 15 degrees equatorward of the ITCZ). This is analogous to the Tropical Easterly Jet (TEJ), which is a unique feature observed over the Indian region during summer monsoon season, with its core at 12 degrees N, equatorward of the seasonal convergence zone centered along 25 degrees N. In these models, positive meridional temperature gradient and the associated easterly shear in the atmosphere strengthened by moisture convergence penetrate up to the upper troposphere, with which TEJ is in thermal wind balance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Indian summer monsoon season of 2009 commenced with a massive deficit in all-India rainfall of 48% of the average rainfall in June. The all-India rainfall in July was close to the normal but that in August was deficit by 27%. In this paper, we first focus on June 2009, elucidating the special features and attempting to identify the factors that could have led to the large deficit in rainfall. In June 2009, the phase of the two important modes, viz., El Nino and Southern Oscillation (ENSO) and the equatorial Indian Ocean Oscillation (EQUINOO) was unfavourable. Also, the eastern equatorial Indian Ocean (EEIO) was warmer than in other years and much warmer than the Bay. In almost all the years, the opposite is true, i.e., the Bay is warmer than EEIO in June. It appears that this SST gradient gave an edge to the tropical convergence zone over the eastern equatorial Indian Ocean, in competition with the organized convection over the Bay. Thus, convection was not sustained for more than three or four days over the Bay and no northward propagations occurred. We suggest that the reversal of the sea surface temperature (SST) gradient between the Bay of Bengal and EEIO, played a critical role in the rainfall deficit over the Bay and hence the Indian region. We also suggest that suppression of convection over EEIO in association with the El Nino led to a positive phase of EQUINOO in July and hence revival of the monsoon despite the El Nino. It appears that the transition to a negative phase of EQUINOO in August and the associated large deficit in monsoon rainfall can also be attributed to the El Nino.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A link between the Atlantic Multidecadal Oscillation (AMO) and multidecadal variability of the Indian summer monsoon rainfall is unraveled and a long sought physical mechanism linking Atlantic climate and monsoon has been identified. The AMO produces persistent weakening (strengthening) of the meridional gradient of tropospheric temperature (TT) by setting up negative (positive) TT anomaly over Eurasia during northern late summer/autumn resulting in early (late) withdrawal of the south west monsoon and persistent decrease (increase) of seasonal monsoon rainfall. On inter-annual time scales, strong North Atlantic Oscillation (NAO) or North Annular mode (NAM) influences the monsoon by producing similar TT anomaly over Eurasia. The AMO achieves the interdecadal modulation of the monsoon by modulating the frequency of occurrence of strong NAO/NAM events. This mechanism also provides a basis for explaining the observed teleconnection between North Atlantic temperature and the Asian monsoon in paleoclimatic proxies. Citation: Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta (2006), A physical mechanism for North Atlantic SST influence on the Indian summer monsoon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution data from the TRMM satellite shows that sea surface temperature (SST) cools by 3 degrees C under the tracks of pre-monsoon tropical cyclones in the north Indian Ocean. However, even the strongest post-monsoon cyclones do not cool the open north Bay of Bengal. In this region, a shallow layer of freshwater from river runoff and monsoon rain caps a deep warm layer. Therefore, storm-induced mixing is not deep, and it entrains warm subsurface water. It is possible that the hydrography of the post-monsoon north Bay favours intense cyclones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results are reported from an extensive series of experiments on boundary layers in which the location of pressure gradient and transition onset could be varied almost independently, by judicious use of tunnel wall liners and transition-fixing devices. The experiments show that the transition zone is sensitive to the pressure gradient especially near onset, and can be significantly asymmetric; no universal similarity appears valid in general. Observed intermittency distributions cannot be explained on the basis of the hypothesis, often made, that the spot propagates at speeds proportional to the local free-stream velocity but is otherwise unaffected by the pressure gradient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the similarity solution for the steady incompressible laminar boundary layer flow of a micropolar fluid past an infinite wedge. The governing equations have been solved numerically using fourth orderRunge-Kutta-Gill method. The results indicate the extent to which the velocity and microrotation profiles, and the surface shear stress are influenced by coupling, microrotation, and pressure gradient parameters. The important role played by the standard length of the micropolar fluid in determining the structure of the boundary layer has also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This correspondence considers the problem of optimally controlling the thrust steering angle of an ion-propelled spaceship so as to effect a minimum time coplanar orbit transfer from the mean orbital distance of Earth to mean Martian and Venusian orbital distances. This problem has been modelled as a free terminal time-optimal control problem with unbounded control variable and with state variable equality constraints at the final time. The problem has been solved by the penalty function approach, using the conjugate gradient algorithm. In general, the optimal solution shows a significant departure from earlier work. In particular, the optimal control in the case of Earth-Mars orbit transfer, during the initial phase of the spaceship's flight, is found to be negative, resulting in the motion of the spaceship within the Earth's orbit for a significant fraction of the total optimized orbit transfer time. Such a feature exhibited by the optimal solution has not been reported at all by earlier investigators of this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical study on the propagation of plane waves in the presence of a hot mean flow in a uniform pipe is presented. The temperature variation in the pipe is taken to be a linear temperature gradient along the axis. The theoretical studies include the formulation of a wave equation based on continuity, momentum, and state equation, and derivation of a general four-pole matrix, which is shown to yield the well-known transfer matrices for several other simpler cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional Clauser-chart method for determination of local skin friction in zero or weak pressure-gradient turbulent boundary layer flows fails entirely in strong pressure-gradient situations. This failure occurs due to the large departure of the mean velocity profile from the universal logarithmic law upon which the conventional Clauser-chart method is based. It is possible to extend this method,even for strong pressure-gradient situations involving equilibrium or near-equilibrium turbulent boundary layers by making use of the so-called non-universal logarithmic laws. These non-universal log laws depend on the local strength of the pressure gradient and may be regarded as perturbations of the universal log law.The present paper shows that the modified Clauser-chart method, so developed, yields quit satisfactory results in terms of estimation of local skin friction in strongly accelerated or retarded equilibrium and near-equilibrium turbulent boundary layers that are not very close to relaminarization or separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though it has been established that ZnO tetrapods can be synthesized by heating Zn in air, it is advantageous to grow tetrapods with legs of different morphologies with different lengths. Here, we report the large scale synthesis of ZnO tetrapods by heating Zn in air ambient. The parameters that control the diameter, length, and morphology of tetrapods are identified. It is shown that the morphology and dimensions of the tetrapods depend not only on the vaporization temperature but also on the temperature gradient of the furnace. The controlled synthesis procedure and the key parameters that influence the morphology are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work addresses the optimum design of a composite box-beam structure subject to strength constraints. Such box-beams are used as the main load carrying members of helicopter rotor blades. A computationally efficient analytical model for box-beam is used. Optimal ply orientation angles are sought which maximize the failure margins with respect to the applied loading. The Tsai-Wu-Hahn failure criterion is used to calculate the reserve factor for each wall and ply and the minimum reserve factor is maximized. Ply angles are used as design variables and various cases of initial starting design and loadings are investigated. Both gradient-based and particle swarm optimization (PSO) methods are used. It is found that the optimization approach leads to the design of a box-beam with greatly improved reserve factors which can be useful for helicopter rotor structures. While the PSO yields globally best designs, the gradient-based method can also be used with appropriate starting designs to obtain useful designs efficiently. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies an ultrasonic wave dispersion characteristics of a nanorod. Nonlocal strain gradient models (both second and fourth order) are introduced to analyze the ultrasonic wave behavior in nanorod. Explicit expressions are derived for wave numbers and the wave speeds of the nanorod. The analysis shows that the fourth order strain gradient model gives approximate results over the second order strain gradient model for dynamic analysis. The second order strain gradient model gives a critical wave number at certain wave frequency, where the wave speeds are zero. A relation among the number of waves along the nanorod, the nonlocal scaling parameter (e(0)a), and the length of the nanorod is obtained from the nonlocal second order strain gradient model. The ultrasonic wave characteristics of the nanorod obtained from the nonlocal strain gradient models are compared with the classical continuum model. The dynamic response behavior of nanorods is explained from both the strain gradient models. The effect of e(0)a on the ultrasonic wave behavior of the nanorods is also observed. (C) 2010 American Institute of Physics.