56 resultados para SN-119

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The confusion over the growth rate of the Nb3Sn superconductor compound following the bronze technique is addressed. Furthermore, a possible explanation for the corrugated structure of the product phase in the multifilamentary structure is discussed. Kirkendall marker experiments are conducted to study the relative mobilities of the species, which also explains the reason for finding pores in the product phase layer. The movement of the markers after interdiffusion reflects that Sn is the faster diffusing species. Furthermore, different concentrations of Sn in the bronze alloy are considered to study the effect of Sn content on the growth rate. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sn-Ag-Cu (SAC) solder alloys are the best Pb free alternative for electronic industry. Since their introduction, efforts are made to improve their efficacies by tuning the processing and composition to achieve lower melting point and better wettability. Nanostructured alloys with large boundary content are known to depress the melting points of metals and alloys. In this article we explore this possibility by processing prealloyed SAC alloys close to SAC305 composition (Sn-3wt%Ag-0.5wt%Cu) by mechanical milling which results in the formation of nanostructured alloys. Pulverisette ball mill (P7) and Vibratory ball mills are used to carry out the milling of the powders at room temperature and at lower temperatures (-104 A degrees C), respectively. We report a relatively smaller depression of melting point ranging up to 5 A degrees C with respect to original alloys. The minimum grain sizes achieved and the depression of melting point are similar for both room temperature and low-temperature processed samples. An attempt has been made to rationalize the observations in terms of the basic processes occurring during the milling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photometric and spectral evolution of the Type Ic supernova SN 2007ru until around 210 days after maximum are presented. The spectra show broad spectral features due to very high expansion velocity, normally seen in hypernovae. The photospheric velocity is higher than other normal Type Ic supernovae (SNe Ic). It is lower than SN 1998bw at similar to 8 days after the explosion, but is comparable at later epochs. The light curve (LC) evolution of SN 2007ru indicates a fast rise time of 8 +/- 3 days to B-band maximum and postmaximum decline more rapid than other broad-line SNe Ic. With an absolute V magnitude of -19.06, SN 2007ru is comparable in brightness with SN 1998bw and lies at the brighter end of the observed SNe Ic. The ejected mass of Ni-56 is estimated to be similar to 0.4 M-circle dot. The fast rise and decline of the LC and the high expansion velocity suggest that SN 2007ru is an explosion with a high kinetic energy/ejecta mass ratio (E-K/M-ej). This adds to the diversity of SNe Ic. Although the early phase spectra are most similar to those of broad-line SN 2003jd, the [O I] line profile in the nebular spectrum of SN 2007ru shows the singly peaked profile, in contrast to the doubly peaked profile in SN 2003jd. The singly peaked profile, together with the high luminosity and the high expansion velocity, may suggest that SN 2007ru could be an aspherical explosion viewed from the polar direction. Estimated oxygen abundance 12 + log(O/H) of similar to 8.8 indicates that SN 2007ru occurred in a region with nearly solar metallicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the liquid-helium-temperature (5 K) electron paramagnetic resonance (EPR) spectra of Cr3+ ions in the nanoparticles of SnO2 synthesized at 600 degrees C with concentrations of 0%, 0.1%, 0.5%, 1%, 1.5%, 2.0%, 2.5%, 3.0%, 5.0%, and 10%. Each spectrum may be simulated as overlap of spectra due to four magnetically inequivalent Cr3+ centers characterized by different values of the spin-Hamiltonian parameters. Three of these centers belong to Cr3+ ions in orthorhombic sites, situated near oxygen vacancies, characterized by very large zero-field splitting parameters D and E, presumably due to the presence of nanoparticles in the samples. The fourth EPR spectrum belongs to the Cr3+ ions situated at sites with tetragonal symmetry, substituting for the Sn4+ ion, characterized by a very small value of D. In addition, there appears a ferromagnetic resonance line due to oxygen defects for samples with Cr3+ concentrations of <= 2.5%. Further, in samples with Cr3+ concentrations of >2.5%, there appears an intense and wide EPR line due to the interactions among the Cr3+ ions in the clusters formed due to rather excessive doping; the intensity and width of this line increase with increasing concentration. The Cr3+ EPR spectra observed in these nanopowders very different from those in bulk SnO2 crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine powders of submicron-sized crystallites of BaTiO3 were prepared at 85–130°C by the hydrothermal method, starting from TiO2.ξH2O gel and Ba(OH)2 solution. The products obtained below 110°C incorporated considerable amounts of H2O and OH− in the lattice. As-prepared BaTiO3 is cubic and converts to the tetragonal phase after heat treatment at 1200°C, accompanied by the loss of residual OH− ions. Hydrothermal reaction of SnO2.ξH2O gel with Ba(OH)2 at 150–260°C gives rise to the hydrated phase, BaSn(OH)6.3H2O, due to the amphoteric nature of SnO2.ξH2O which stabilises Sn(OH)62− anions in basic media. On heating in air or releasing the pressure in situ at 260°C, BaSn(OH)6.3H2O converts to BaSnO3 through an intermediate, BaSnO(OH)4. Solid solutions of Ba(Ti,Sn)O3 are directly formed from (TiO2 + SnO2)..ξH2O gel up to 35 mol% SnO2. At higher Sn contents, the hydrothermal products are mixtures of BaSn(OH)6.3H2O and BaTiO3, which on annealing at 1000°C result in monophasic Ba(Ti,Sn)O3. The sintering characteristics and the dielectric properties of the ceramics prepared out of these fine powders are presented. The dielectric properties of fine-grained Ba(Ti,Sn)O3 ceramics are explained on the basis of the prevailing diffuse phase transition behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoelectron and Auger spectroscopic techniques have been employed to study surface segregation and oxidation of Cu-1 at%Sn, Cu-9at%Pd and Cu-25at%Pd alloys. Both Cu-Pd(9%) and Cu-Pd(25%) alloys show segregation of Cu when heated above 500 K. The Pd concentration was reduced by 50% at 750 K compared to the bulk composition; the enthalpy of segregation of Cu is around - 6kJ/mol. Sn segregation is seen from 470 to 650 K in the Cu-Sn(1%) alloy, and a saturation plateau of Sn concentration above 650 K is observed. Surface oxidation of Cu-Sn(1%) and Cu-Pd(9%) alloys at 500 K showed the formation of Cu2O on the surface with total suppression of Sn or Pd on the respective alloy surfaces. On vacuum annealing the oxidised Cu-Sn alloy surface at 550 K, a displacement reaction 2Cu2O+Sn→4Cu+SnO2 was observed. However, under similar annealing of the oxidised Cu-Pd(9%) alloy surface at 500 K, oxide oxygen was totally desorbed leaving the Cu-Pd alloy surface clean. In the case of the Cu-Pd(25%) alloy, only dissociatively chemisorbed oxygen was seen at 500 K which desorbed at the same temperature. Oxygen spill-over from copper to palladium is suggested as the mechanism of oxygen desorption from the oxidised Cu-Pd alloy surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Tang et al. (Acta Mater. 56 (2008) 5818) published a paper explaining room temperature growth of the phases in the Au/Sn system. In their analysis, they considered Au as the only mobile species for all the product phases, and Sn as virtually immobile. It is shown here that this analysis is not correct, since Sn has a higher diffusion rate through the AuSn4 phase. On the other hand, the mobilities of species in the AuSn2 phase are as yet unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find sandwiched metal dimers CB5H6M–MCB5H6 (M = Si, Ge, Sn) which are minima in the potential energy surface with a characteristic M–M single bond. The NBO analysis and the M–M distances (Å) (2.3, 2.44 and 2.81 for M = Si, Ge, Sn) indicate substantial M–M bonding. Formal generation of CB5H6M–MCB5H6 has been studied theoretically. Consecutive substitution of two boron atoms in B7H−27 by M (Si, Ge, Sn) and carbon, respectively followed by dehydrogenation may lead to our desired CB5H6M–MCB5H6. We find that the slip distorted geometry is preferred for MCB5H7 and its dehydrogenated dimer CB5H6M–MCB5H6. The slip-distortion of M–M bond in CB5H6M–MCB5H6 is more than the slip distortion of M–H bond in MCB5H7. Molecular orbital analysis has been done to understand the slip distortion. Larger M–M bending (CB5H6M–MCB5H6) in comparison with M–H bending (MCB5H7) is suspected to be encouraged by stabilization of one of the M–M π bonding MO’s. Preference of M to occupy the apex of pentagonal skeleton of MCB5H7 over its icosahedral analogue MCB10H11 has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of a metastable miscibility gap has been indicated from the metastable phase diagram of the Zn-Sn system calculated using regular solution and Krupkowski's models. To validate this phenomenon experimentally, the entrained droplet technique was used to achieve high undercooling and to access the metastable regions. The microstructural analysis confirms the miscibility gap and the associated monotectic reaction. Evidence is also presented for a possible massive solidification of the undercooled melt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nb3Sn growth following the bronze technique, (i.e. by interdiffusion between Cu(Sn) alloy (bronze) and Nb) is one of the important methodologies to produce this superconductor. In this study, we have addressed the confusion over the growth rate of the Nb3Sn phase. Furthermore, a possible explanation for the corrugated layer in the multifilamentary structure is discussed. Kirkendall marker experiments were conducted to study the relative mobilities of the species, which also explained the reason for finding pores in the product phase layer. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined. We have further explained the dramatic increase in the growth rate of the prod

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymatic pathway for the synthesis of sn-glycerol 3-phosphate was investigated in developing groundnut seeds (Arachis hypogaea). Glycerol-3-phosphate dehydrogenase was not detected in this tissue but an active glycerokinase was demonstrated in the cytosolic fraction. It showed an optimum pH at 8.6 and positive cooperative interactions with both glycerol and ATP. Triosephosphate isomerase and glyceraldehyde-3-phosphate phosphatase were observed mainly in the cytosolic fraction while an active glyceraldehyde reductase was found mainly in the mitochondrial and microsomal fractions. The glyceraldehyde 3-phosphate phosphatase showed specificity and positive cooperativity with respect to glyceraldehyde 3-phosphate. The glyceraldehyde reductase was active toward glucose and fructose but not toward formaldehyde and showed absolute specificity toward NADPH. It is concluded that in the developing groundnut seed, sn-glycerol 3-phosphate is synthesized essentially by the pathway dihydroxyacetone phosphate ? glyceraldehyde 3-phosphate ?Pi glyceraldehyde ?NADPH glycerol ?ATP glycerol 3-phosphate. All the enyzmes of this pathway showed activity profiles commensurate with their participation in triacylglycerol synthesis which is maximal during the period 15�35 days after fertilization. Glycerokinase appears to be the rate-limiting enzyme in this pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrooxidation of methanol in sulphuric acid on carbon-supported electrodes containing Pt-Sn bimetal catalysts prepared by an in-situ route is reported, The catalysts have been characterized employing chemical analyses, XRD, and XANES data in conjunction with electrochemistry. This study suggests that the Sn content in Pt-Sn bimetals produces: (i) a charge transfer from Sn to Pt and (ii) an increase in the coverage of adsorbed methanolic residues with the Sn content. From the electrode-kinetics data, it is inferred that while the electrodes of (3:3) Pt-Sn/C catalyst involve a 2-electron rate-limiting step akin to Pt/C electrodes, it is shifted to only 1-electron on (3:2) Pt-Sn/C, (3:3) Pt-Sn/C, and (3:4) Pt-Sn/C electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide pyrochlores of the formula A2BB? O7 (A = La, Nd; BB? = Pb, Sn, Bi) have been synthesized by a low-temperature ambient-pressure route employing KOH melts. All the compositions, including La2Bi2O7 and its strontium-substituted derivatives, La2-xSrxBi2O7-?, are deeply colored insulators, confirming that a metallic ground state is not achieved for Pb(IV) and Bi(IV/V) oxides with the pyrochlore structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tracer diffusion coefficients of the elements as well as the integrated interdiffusion coefficients are determined for the Cu3Sn and Cu6Sn5 intermetallic compounds using incremental diffusion couples and Kirkendall marker shift measurements. The activation energies are determined for the former between 498 K and 623 K (225 A degrees C and 350 A degrees C) and for the latter between 423 K and 473 K (150 A degrees C and 200 A degrees C). Sn is found to be a slightly faster diffuser in Cu6Sn5, and Cu is found to be the faster diffuser in Cu3Sn. The results from the incremental couples are used to predict the behavior of a Cu/Sn couple where simultaneous growth of both intermetallics occurs. The waviness at the Cu3Sn/Cu6Sn5 interface and possible reasons for not finding Kirkendall markers in both intermetallics in the Cu/Sn couple are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electro-oxidation of methanol was studied on carbon-supported Pt---Sn/C electrodes in silcotungstic acid (SiWA) at various concentrations. The porous-carbon electrodes employing Pt---Sn/C catalyst have been characterized using chemical analyses, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in conjunction with electrochemistry. The presence of Pt---Sn and Pt3Sn alloys along with Pt and SnO2 phases in the catalyst were identified by XRD. XPS analysis showed a lower amount of PtO species in the Pt---Sn/C catalyst with respect to the corresponding Pt/C sample. From the steady-state galvanostatic polarization data on Pt---Sn/C electrodes in SiWA, it is inferred that a one-electron process is the rate determining step. The performance of the electrodes in 0.084 M SiWA was better than in 2.5 M H2SO4 under similar conditions up to load currents of about 100 mA cm−2 indicating the promoting behaviour of the electrolyte. At currents larger than 100 mA cm−2, the performance of the electrodes in 0.084 SiWA was poorer than that in 2.5 M H2SO4 mainly due to the dominance of mass polarization in the former owing to the large size of keggin units associated with the structure of SiWA. This aspect was supported by cyclic voltammetry and ac impedance studies on Pt---Sn/C electrodes. Simulation of the electrochemical impedance response for the oxidation of methanol in SiWA was carried out using the equivalent electrical circuit model.