504 resultados para SLOW DYNAMICS

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermotropic liquid crystals are known to display rich phase behavior on temperature variation. Although the nematic phase is orientationally ordered but translationally disordered, a smectic phase is characterized by the appearance of a partial translational order in addition to a further increase in orientational order. In an attempt to understand the interplay between orientational and translational order in the mesophases that thermotropic liquid crystals typically exhibit upon cooling from the high-temperature isotropic phase, we investigate the potential energy landscapes of a family of model liquid crystalline systems. The configurations of the system corresponding to the local potential energy minima, known as the inherent structures, are determined from computer simulations across the mesophases. We find that the depth of the potential energy minima explored by the system along an isochor grows through the nematic phase as temperature drops in contrast to its insensitivity to temperature in the isotropic and smectic phases. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures; the inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the isotropic-nematic transition. We find that this breakdown occurs at a temperature below which the system explores increasingly deeper potential energy minima.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dielectric dispersion and NMRD experiments have revealed that a significant fraction of water molecules in the hydration shell of various proteins do not exhibit any slowing down of dynamics. This is usually attributed to the presence of the hydrophobic residues (HBR) on the surface, although HBRs alone cannot account for the large amplitude of the fast component. Solvation dynamics experiments and also computer simulation studies, on the other hand, repeatedly observed the presence of a non-negligible slow component. Here we show, by considering three well-known proteins (lysozyme, myoglobin and adelynate kinase), that the fast component arises partly from the response of those water molecules that are hydrogen bonded with the backbone oxygen (BBO) atoms. These are structurally and energetically less stable than those with the side chain oxygen (SCO) atoms. In addition, the electrostatic interaction energy distribution (EIED) of individual water molecules (hydrogen bonded to SCO) with side chain oxygen atoms shows a surprising two peak character with the lower energy peak almost coincident with the energy distribution of water hydrogen bonded to backbone oxygen atoms (BBO). This two peak contribution appears to be quite general as we find it for lysozyme, myoglobin and adenylate kinase (ADK). The sharp peak of EIED at small energy (at less than 2 k(B)T) for the BBO atoms, together with the first peak of EIED of SCO and the HBRs on the protein surface, explain why a large fraction (similar to 80%) of water in the protein hydration layer remains almost as mobile as bulk water Significant slowness arises only from the hydrogen bonds that populate the second peak of EIED at larger energy (at about 4 k(B)T). Thus, if we consider hydrogen bond interaction alone, only 15-20% of water molecules in the protein hydration layer can exhibit slow dynamics, resulting in an average relaxation time of about 5-10 ps. The latter estimate assumes a time constant of 20-100 ps for the slow component. Interestingly, relaxation of water molecules hydrogen bonded to back bone oxygen exhibit an initial component faster than the bulk, suggesting that hydrogen bonding of these water molecules remains frustrated. This explanation of the heterogeneous and non-exponential dynamics of water in the hydration layer is quantitatively consistent with all the available experimental results, and provides unification among diverse features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate the distinct glassy transport phenomena associated with the phase separated and spin-glass-like phases of La0.85Sr0.15CoO3, prepared under different heat-treatment conditions. The low-temperature annealed (phase-separated) sample, exhibits a small change in resistance, with evolution of time, as compared to the high-temperature annealed (spin glass) one. However, the resistance change as a function of time, in both cases, is well described by a stretched exponential fit, signifying the slow dynamics. Moreover, the ultraviolet spectroscopy study evidences a relatively higher density of states in the vicinity of EF for low-temperature annealed sample and this correctly points to its less semiconducting behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reentrant low temperature phase of the perovskite manganite LaMnO3+delta (delta=0.22) has been investigated with ac susceptibility and dc magnetization studies. A critical examination of the memory effects in ac susceptibility leads us to the conclusion that the slow dynamics in the system is a consequence of collective relaxation processes resulting from interactions between ferromagnetic clusters, whose presence was indicated in earlier studies. Here, we postulate that the collective behavior is due to the existence of long-range (dipolar) interactions between the large ferromagnetic `superspins'. This is also confirmed by an abnormally large microscopic spin-flip time (similar to 10(-9) s) compared to a canonical spin glass. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SrRuO3 is widely known to be an itinerant ferromagnet with a T-C similar to 160 K. It is well known that glassy materials exhibit time dependent phenomena such as memory effect due to their generic slow dynamics. However, for the first time, we have observed memory effect in SrRu(1-x)O3 (0.01

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-dimensional triangular-lattice antiferromagnetic systems continue to be an interesting area in condensed matter physics and LiNiO2 is one such among them. Here we present a detailed experimental magnetic study of the quasi-stoichiometric LixNi2-xO2 system (0.67slow dynamics (magnetic relaxation, magnetic memory effect etc). By tuning the Li deficiency in a controlled manner, an increase in the ordering temperature is observed. Most strikingly, with the Li deficiency the nature of the magnetic ground state is changed from spin glass to ferromagnetic, with two intermediate states-namely cluster glass and re-entrant spin glass. The critical behaviour of the re-entrant spin glass is also studied here. The critical exponents (beta, gamma and delta) are extracted from the modified Arrot plot, Kouvel-Fisher method, and critical isotherm analysis. The critical exponents match with the long-range mean-field model. The values of the critical exponents are confirmed by the Widom scaling law: delta = 1 + gamma beta(-1). Furthermore, the universality class of the scaling relations is verified, where the scaled m and scaled h collapse into two branches. Finally, based on our observations, a phase diagram is constructed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the viscosity of a liquid increases rapidly in the supercooled regime, the nature of molecular relaxation can exhibit dynamics rather different from the fast dynamics observed in the normal regime. In this article, we present theoretical studies of solvation dynamics and orientational relaxation in slow liquids. As the local short-range correlations are important in the slow liquids, we have extended our previous theory to take into account the shea-range pair correlations between the polar solute and the dipolar solvent molecules. Application of the generalized theory To the study of solvation dynamics of amide systems gives nice agreement with the experimental results of Maroncelli and co-workers (J. Phys. Chem. 1990, 94, 4929). The theory also provides valuable insight into the orientational relaxation precesses in the viscous liquids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamics of three liquid crystals, 4'(pentyloxy)-4-biphenylcarbonitrile (5-OCB), 4'-pentyl-4-biphenylcarbonitrile (5-CB), and 1-isothiocyanato-(4-propylcyclohexyl)benzene (3-CHBT), are investigated from very short time (similar to1 ps) to very long time (>100 ns) as a function of temperature using optical heterodyne detected optical Kerr effect experiments. For all three liquid crystals, the data decay exponentially only on the longest time scale (> several ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudonematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. At short time, all three liquid crystals display power law decays. Over the full range of times, the data for all three liquid crystals are fit with a model function that contains a short time power law. The power law exponents for the three liquid crystals range between 0.63 and 0.76, and the power law exponents are temperature independent over a wide range of temperatures. Integration of the fitting function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics. (C) 2002 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamics of hydrogen bonds among water molecules themselves and with the polar head groups (PHG) at a micellar surface have been investigated by long molecular dynamics simulations. The lifetime of the hydrogen bond between a PHG and a water molecule is found to be much longer than that between any two water molecules, and is likely to be a general feature of hydrophilic surfaces of organized assemblies. Analyses of individual water trajectories suggest that water molecules can remain bound to the micellar surface for more than 100 ps. The activation energy for such a transition from the bound to a free state for the water molecules is estimated to be about 3.5 kcal/mol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamics of water molecules near an aqueous micellar interface is studied in an atomistic molecular dynamics simulation of cesium pentadecafluorooctanoate (CsPFO) in water. The dipolar orientational time correlation function (tcf) and the translational diffusion of the water molecules are investigated. Results show that both the reorientational and the translational motion of water molecules near the micelle are restricted. In particular, the orientational tcf exhibits a very slow component in the long time which is slower than its bulk value by 2 orders of magnitude. This slow decay seems to be related to the slow decay often observed in experiments. The origin of the slow decay is analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the method of multiple scales (MMS) to a well known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto second order for such systems has been developed recently, and is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy. The main advantage of the present analysis is that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS. Finally, the strong sensitivity of the dynamics to small changes in parameter values is seen clearly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzyme is a dynamic entity with diverse time scales, ranging from picoseconds to seconds or even longer. Here we develop a rate theory for enzyme catalysis that includes conformational dynamics as cycling on a two-dimensional (2D) reaction free energy surface involving an intrinsic reaction coordinate (X) and an enzyme conformational coordinate (Q). The validity of Michaelis-Menten (MM) equation, i.e., substrate concentration dependence of enzymatic velocity, is examined under a nonequilibrium steady state. Under certain conditions, the classic MM equation holds but with generalized microscopic interpretations of kinetic parameters. However, under other conditions, our rate theory predicts either positive (sigmoidal-like) or negative (biphasic-like) kinetic cooperativity due to the modified effective 2D reaction pathway on X-Q surface, which can explain non-MM dependence previously observed on many monomeric enzymes that involve slow or hysteretic conformational transitions. Furthermore, we find that a slow conformational relaxation during product release could retain the enzyme in a favorable configuration, such that enzymatic turnover is dynamically accelerated at high substrate concentrations. The effect of such conformation retainment in a nonequilibrium steady state is evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study quench dynamics and defect production in the Kitaev and the extended Kitaev models. For the Kitaev model in one dimension, we show that in the limit of slow quench rate, the defect density n∼1/√τ, where 1/τ is the quench rate. We also compute the defect correlation function by providing an exact calculation of all independent nonzero spin correlation functions of the model. In two dimensions, where the quench dynamics takes the system across a critical line, we elaborate on the results of earlier work [K. Sengupta, D. Sen, and S. Mondal, Phys. Rev. Lett. 100, 077204 (2008)] to discuss the unconventional scaling of the defect density with the quench rate. In this context, we outline a general proof that for a d-dimensional quantum model, where the quench takes the system through a d−m dimensional gapless (critical) surface characterized by correlation length exponent ν and dynamical critical exponent z, the defect density n∼1/τmν/(zν+1). We also discuss the variation of the shape and spatial extent of the defect correlation function with both the rate of quench and the model parameters and compute the entropy generated during such a quenching process. Finally, we study the defect scaling law, entropy generation and defect correlation function of the two-dimensional extended Kitaev model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding of 13C-labeled N-acetylgalactosamine (13C-GalNAc) and N-trifluoroacetylgalactosamine (19F-GalNAc) to Artocarpus integrifolia agglutinin has been studied using 13C and 19F nuclear magnetic resonance spectroscopy, respectively. Binding of these saccharides resulted in broadening of the resonances, and no change in chemical shift was observed, suggesting that the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc experience a magnetically equivalent environment in the lectin combining site. The alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc were found to be in slow exchange between free and protein bound states. Binding of 13C-GalNAc was studied as a function of temperature. From the temperature dependence of the line broadening, the thermodynamic and kinetic parameters were evaluated. The association rate constants obtained for the alpha-anomers of 13C-GalNAc and 19F-GalNAc (k+1 = 1.01 x 10(5) M-1.s-1 and 0.698 x 10(5) M-1.s-1, respectively) are in close agreement with those obtained for the corresponding beta-anomers (k+1 = 0.95 x 10(5) M-1.s-1 and 0.65 x 10(5) M-1.s-1, respectively), suggesting that the two anomers bind to the lectin by a similar mechanism. In addition these values are several orders of magnitude slower than those obtained for diffusion controlled processes. The dissociation rate constants obtained are 49.9, 56.9, 42, and 43 s-1, respectively, for the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc. A two-step mechanism has been proposed for the interaction of 13C-GalNAc and 19F-GalNAc with A. integrifolia lectin in view of the slow association rates and high activation entropies. The thermodynamic parameters obtained for the association and dissociation reactions suggest that the binding process is entropically favored and that there is a small enthalpic contribution.