40 resultados para SLOPES
em Indian Institute of Science - Bangalore - Índia
Resumo:
The method of characteristics with some simplifying assumptions is made applicable for analyzing a given straight slope. By assuming that the mobilized shear strength varies with depth, and treating the whole soil mass as a series of layers, factors of safety of a given slope at different heights and a series of lines with different mobilized shear strength are obtained. The results show that the factors of safety obtained by the present method are lower than those obtained by friction circle method.
Resumo:
This paper studies the effect of frequency of base shaking on the dynamic response of unreinforced and reinforced soil slopes through a series of shaking table tests. Slopes were constructed using clayey sand and geogrids were used for reinforcing the slopes. Two different slope angles 45 degrees and 60 degrees were used in tests and the quantity and location of reinforcement is varied in different tests. Acceleration of shaking is kept constant as 0.3 g in all the tests to maximize the response and the frequency of shaking was 2 Hz, 5 Hz and 7 Hz in different tests. The slope is instrumented with ultrasonic displacement sensors and accelerometers at different elevations. The response of different slopes is compared in terms of the deformation of the slope and acceleration amplifications measured at different elevations. It is observed that the displacements at all elevations increased with increase in frequency for all slopes, whereas the effect of frequency on acceleration amplifications is not significant for reinforced slopes. Results showed that the acceleration and displacement response is not increasing proportionately with the increase in the frequency, suggesting that the role of frequency in the seismic response is very important. Reinforced slopes showed lesser displacements compared to unreinforced slopes at all frequency levels. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The stability of a bioreactor landfill slope is influenced by the quantity and method of leachate recirculation as well as on the degree of decomposition. Other factors include properties variation of waste material and geometrical configurations, i.e., height and slope of landfills. Conventionally, the stability of slopes is evaluated using factor of safety approach, in which the variability in the engineering properties of MSW is not considered directly and stability issues are resolved from past experiences and good engineering judgments. On the other hand, probabilistic approach considers variability in mathematical framework and provides stability in a rational manner that helps in decision making. The objective of the present study is to perform a parametric study on the stability of a bioreactor landfill slope in probabilistic framework considering important influencing factors, such as, variation in MSW properties, amount of leachate recirculation, and age of degradation, in a systematic manner. The results are discussed in the light of existing relevant regulations, design and operation issues.
Resumo:
By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.
Resumo:
Using Terzaghi's degree of consolidation, U, and the time factor, T, relationship, if M-U1 and M-U2 (M-U1 not equal M-U2) are slopes of the U-root T curve at any two time factors T-U1 and T-U2, then it can be shown that a unique relationship exists between T-U2/T-U1, M-U1/M-U2, and TU, (or TU2), and knowing any two of these, the third can be uniquely determined. A chart, called the T chart, has been plotted using these three variables for quickly determining T and U at any experimental time, t, to determine the coefficient of consolidation, c(v), corrected zero settlement, delta(o), and ultimate primary settlement, delta(100). The chart can be used even in those cases where settlement and time, at the instant of load increment, are not known.
Resumo:
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid-solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading-unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 10(6) for stress-free temperature-induced transformation and 10(4) for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress-strain hysteresis loop is observed for mechanical loading with higher rates.
Resumo:
A branch and bound type algorithm is presented in this paper to the problem of finding a transportation schedule which minimises the total transportation cost, where the transportation cost over each route is assumed to be a piecewice linear continuous convex function with increasing slopes. The algorithm is an extension of the work done by Balachandran and Perry, in which the transportation cost over each route is assumed to beapiecewise linear discontinuous function with decreasing slopes. A numerical example is solved illustrating the algorithm.
Resumo:
Skew correction of complex document images is a difficult task. We propose an edge-based connected component approach for robust skew correction of documents with complex layout and content. The algorithm essentially consists of two steps - an 'initialization' step to determine the image orientation from the centroids of the connected components and a 'search' step to find the actual skew of the image. During initialization, we choose two different sets of points regularly spaced across the the image, one from the left to right and the other from top to bottom. The image orientation is determined from the slope between the two succesive nearest neighbors of each of the points in the chosen set. The search step finds succesive nearest neighbors that satisfy the parameters obtained in the initialization step. The final skew is determined from the slopes obtained in the 'search' step. Unlike other connected component based methods, the proposed method does not require any binarization step that generally precedes connected component analysis. The method works well for scanned documents with complex layout of any skew with a precision of 0.5 degrees.
Resumo:
Proton NMR relaxation measurements have been carried out in anti-ferroelectric Betaine phosphate (BP), ferroelectric Betaine phosphite (BPI) and the mixed system BPI(1-x)BPx, at 11.4MHz and 23.3MHz from 300K to 80K for x=0.0, 0.25, 0.45, 0.85, and 1.0. The temperature dependence of spin lattice relaxation time T, exhibits two minima as expected from the BPP model in BP and BPI. The Larmor frequency dependence of T, in the mixed system is rather unusual and exhibits different slopes for the low temperature wings at the two frequencies, which is a clear experimental evidence of the presence of different methyl groups with different activation energies (E-a) indicating disorder.
Resumo:
Current-potential relationships are derived for porous electrode systems following a homogeneous model and whenadsorbed intermediates participate in the electrode reaction. Limiting Tafel slopes were deduced and compared with thecorresponding behavior on planar electrode systems. The theoretical results showed doubling of Tafel slopes when theslow-step is a charge-transfer reaction and a nonlogarithmic current-voltage behavior when the slow-step is a chemical reaction.Comparison of the experimental results with theory for the case of oxygen reduction on carbon surfaces in alkalinemedia indicates that a slow chemical reaction following the initial charge-transfer reaction to be the likely rate-controllingstep. Theoretical relationships are utilized to determine the exchange current density and the surface coverage by the adsorbedintermediates during the course of oxygen reduction from alkaline solutions on "carbon." Tafel slope measurementson planar and porous electrodes for the same reaction are suggested as one of the diagnostic criteria for elucidatingthe mechanistic pathways of electrochemical reactions.
Resumo:
The movement and habitat utilization patterns were studied in an Asian elephant population during 1981-83 within a 1130 km2 area in southern India (110 30' N to 120 0' N and 760 50' E to 770 15' E). The study area encompasses a diversity of vegetation types from dry thorn forest (250-400 m) through deciduous forest (400-1400 m) to stunted evergreen shola forest and grassland (1400-1800 m). Home range sizes of some identified elephants were between 105 and 320 km2. Based on the dry season distribution, five different elephant clans, each consisting of between 50 and 200 individuals and having overlapping home ranges, could be defined within the study area. Seaso- nal habitat preferences were related to the availability of water and the palatability of food plants. During the dry months (January-April) elephants congregated at high densities of up to five individuals kM-2 in river valleys where browse plants had a much higher protein content than the coarse tall grasses on hill slopes. With the onset of rains of the first wet season (May- August) they dispersed over a wider area at lower densities, largely into the tall grass forests, to feed on the fresh grasses, which then had a high protein value. During the second wet season (September-December), when the tall grasses became fibrous, they moved into lower elevation short grass open forests. The normal movement pattern could be upset during years of adverse environmental con- ditions. However, the movement pattern of elephants in this region has not basically changed for over a century, as inferred from descriptions recorded during the nineteenth century.
Resumo:
Five different shaped weirs were designed and pertinent data for their use are given. One of these weir shapes had the least “sharp edge” at the junction of the base weir and “complementary weir.” Two other types of weirs had equal slopes at the junction of the base weir and complementary weir. Another shape, for which neither the indication accuracy was constant nor the slope was equal at the junction of the base weir and complementary weir, was also tested. The results of the four weir shapes hydraulically tested give consistent values for the coefficient of discharge varying between 0.625 to 0.631. The indication accuracies of all the previously designed linear proportional weirs (includig Sutro weir) are neither constant nor unity, as is believed.
Resumo:
The seismic slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India, is presented in this paper. The rock slopes are composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Seismic slope stability analysis of the slope under consideration is carried out using both pseudo-static approach and time response approach as the site is located in seismic zone V as per the earth quake zonation maps of India. Stability of the slope is studied numerically using program FLAC. The results obtained from the pseudo-static analysis are presented in the form of Factor of Safety (FOS) and the results obtained from the time response analysis of the slope are presented in terms of horizontal and vertical displacements along the slope. The results obtained from both the analyses confirmed the global stability of the slope as the FOS in case of pseudo-static analysis is above 1.0 and the displacements observed in case of time response analysis are within the permissible limits. This paper also presents the results obtained from the parametric analysis performed in the case of time response analysis in order to understand the effect of individual parameters on the overall stability of the slope.
Resumo:
The absorption produced by the audience in concert halls is considered a random variable. Beranek's proposal [L. L. Beranek, Music, Acoustics and Architecture (Wiley, New York, 1962), p. 543] that audience absorption is proportional to the area they occupy and not to their number is subjected to a statistical hypothesis test. A two variable linear regression model of the absorption with audience area and residual area as regressor variables is postulated for concert halls without added absorptive materials. Since Beranek's contention amounts to the statement that audience absorption is independent of the seating density, the test of the hypothesis lies in categorizing halls by seating density and examining for significant differences among slopes of regression planes of the different categories. Such a test shows that Beranek's hypothesis can be accepted. It is also shown that the audience area is a better predictor of the absorption than the audience number. The absorption coefficients and their 95% confidence limits are given for the audience and residual areas. A critique of the regression model is presented.
Resumo:
Numerical control (NC) for contouring operations requires precise control of position and feed rate for approximating the contour by linear moves of the cutter. A control scheme, for generating linear moves with desired slopes for the cutter, is described. This scheme provides for nine successive linear moves, and may be either expanded or implemented in succession, for approximating a contour.