3 resultados para SIMO
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper investigates the diversity-multiplexing gain tradeoff (DMT) of a time-division duplex (TDD) single-input multiple-output (SIMO) system with perfect channel state information (CSI) at the receiver (CSIR) and partial CSI at the transmitter (CSIT). The partial CSIT is acquired through a training sequence from the receiver to the transmitter. The training sequence is chosen in an intelligent manner based on the CSIR, to reduce the training length by a factor of r, the number of receive antennas. We show that, for the proposed training scheme and a given channel coherence time, the diversity order increases linearly with r for nonzero multiplexing gain. This is a significant improvement over conventional orthogonal training schemes.
Resumo:
In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes.
Resumo:
We explore an isoparametric interpolation of total quaternion for geometrically consistent, strain-objective and path-independent finite element solutions of the geometrically exact beam. This interpolation is a variant of the broader class known as slerp. The equivalence between the proposed interpolation and that of relative rotation is shown without any recourse to local bijection between quaternions and rotations. We show that, for a two-noded beam element, the use of relative rotation is not mandatory for attaining consistency cum objectivity and an appropriate interpolation of total rotation variables is sufficient. The interpolation of total quaternion, which is computationally more efficient than the one based on local rotations, converts nodal rotation vectors to quaternions and interpolates them in a manner consistent with the character of the rotation manifold. This interpolation, unlike the additive interpolation of total rotation, corresponds to a geodesic on the rotation manifold. For beam elements with more than two nodes, however, a consistent extension of the proposed quaternion interpolation is difficult. Alternatively, a quaternion-based procedure involving interpolation of relative rotations is proposed for such higher order elements. We also briefly discuss a strategy for the removal of possible singularity in the interpolation of quaternions, proposed in [I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133]. The strain-objectivity and path-independence of solutions are justified theoretically and then demonstrated through numerical experiments. This study, being focused only on the interpolation of rotations, uses a standard finite element discretization, as adopted by Simo and Vu-Quoc [J.C. Simo, L. Vu-Quoc, A three-dimensional finite rod model part II: computational aspects, Comput. Methods Appl. Mech. Engrg. 58 (1986) 79–116]. The rotation update is achieved via quaternion multiplication followed by the extraction of the rotation vector. Nodal rotations are stored in terms of rotation vectors and no secondary storages are required.