23 resultados para SIFT,Computer Vision,Python,Object Recognition,Feature Detection,Descriptor Computation
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we propose a technique for video object segmentation using patch seams across frames. Typically, seams, which are connected paths of low energy, are utilised for retargeting, where the primary aim is to reduce the image size while preserving the salient image contents. Here, we adapt the formulation of seams for temporal label propagation. The energy function associated with the proposed video seams provides temporal linking of patches across frames, to accurately segment the object. The proposed energy function takes into account the similarity of patches along the seam, temporal consistency of motion and spatial coherency of seams. Label propagation is achieved with high fidelity in the critical boundary regions, utilising the proposed patch seams. To achieve this without additional overheads, we curtail the error propagation by formulating boundary regions as rough-sets. The proposed approach out-perform state-of-the-art supervised and unsupervised algorithms, on benchmark datasets.
Resumo:
In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.
Resumo:
Some experimental results on the recognition of three-dimensional wire-frame objects are presented. In order to overcome the limitations of a recent model, which employs radial basis functions-based neural networks, we have proposed a hybrid learning system for object recognition, featuring: an optimization strategy (simulated annealing) in order to avoid local minima of an energy functional; and an appropriate choice of centers of the units. Further, in an attempt to achieve improved generalization ability, and to reduce the time for training, we invoke the principle of self-organization which utilises an unsupervised learning algorithm.
Resumo:
An action is typically composed of different parts of the object moving in particular sequences. The presence of different motions (represented as a 1D histogram) has been used in the traditional bag-of-words (BoW) approach for recognizing actions. However the interactions among the motions also form a crucial part of an action. Different object-parts have varying degrees of interactions with the other parts during an action cycle. It is these interactions we want to quantify in order to bring in additional information about the actions. In this paper we propose a causality based approach for quantifying the interactions to aid action classification. Granger causality is used to compute the cause and effect relationships for pairs of motion trajectories of a video. A 2D histogram descriptor for the video is constructed using these pairwise measures. Our proposed method of obtaining pairwise measures for videos is also applicable for large datasets. We have conducted experiments on challenging action recognition databases such as HMDB51 and UCF50 and shown that our causality descriptor helps in encoding additional information regarding the actions and performs on par with the state-of-the art approaches. Due to the complementary nature, a further increase in performance can be observed by combining our approach with state-of-the-art approaches.
Resumo:
Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.
Resumo:
In this paper we present a depth-guided photometric 3D reconstruction method that works solely with a depth camera like the Kinect. Existing methods that fuse depth with normal estimates use an external RGB camera to obtain photometric information and treat the depth camera as a black box that provides a low quality depth estimate. Our contribution to such methods are two fold. Firstly, instead of using an extra RGB camera, we use the infra-red (IR) camera of the depth camera system itself to directly obtain high resolution photometric information. We believe that ours is the first method to use an IR depth camera system in this manner. Secondly, photometric methods applied to complex objects result in numerous holes in the reconstructed surface due to shadows and self-occlusions. To mitigate this problem, we develop a simple and effective multiview reconstruction approach that fuses depth and normal information from multiple viewpoints to build a complete, consistent and accurate 3D surface representation. We demonstrate the efficacy of our method to generate high quality 3D surface reconstructions for some complex 3D figurines.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
This paper introduces a scheme for classification of online handwritten characters based on polynomial regression of the sampled points of the sub-strokes in a character. The segmentation is done based on the velocity profile of the written character and this requires a smoothening of the velocity profile. We propose a novel scheme for smoothening the velocity profile curve and identification of the critical points to segment the character. We also porpose another method for segmentation based on the human eye perception. We then extract two sets of features for recognition of handwritten characters. Each sub-stroke is a simple curve, a part of the character, and is represented by the distance measure of each point from the first point. This forms the first set of feature vector for each character. The second feature vector are the coeficients obtained from the B-splines fitted to the control knots obtained from the segmentation algorithm. The feature vector is fed to the SVM classifier and it indicates an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method.
Resumo:
Large variations in human actions lead to major challenges in computer vision research. Several algorithms are designed to solve the challenges. Algorithms that stand apart, help in solving the challenge in addition to performing faster and efficient manner. In this paper, we propose a human cognition inspired projection based learning for person-independent human action recognition in the H.264/AVC compressed domain and demonstrate a PBL-McRBEN based approach to help take the machine learning algorithms to the next level. Here, we use gradient image based feature extraction process where the motion vectors and quantization parameters are extracted and these are studied temporally to form several Group of Pictures (GoP). The GoP is then considered individually for two different bench mark data sets and the results are classified using person independent human action recognition. The functional relationship is studied using Projection Based Learning algorithm of the Meta-cognitive Radial Basis Function Network (PBL-McRBFN) which has a cognitive and meta-cognitive component. The cognitive component is a radial basis function network while the Meta-Cognitive Component(MCC) employs self regulation. The McC emulates human cognition like learning to achieve better performance. Performance of the proposed approach can handle sparse information in compressed video domain and provides more accuracy than other pixel domain counterparts. Performance of the feature extraction process achieved more than 90% accuracy using the PTIL-McRBFN which catalyzes the speed of the proposed high speed action recognition algorithm. We have conducted twenty random trials to find the performance in GoP. The results are also compared with other well known classifiers in machine learning literature.
Resumo:
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.
Resumo:
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.
Resumo:
3D Face Recognition is an active area of research for past several years. For a 3D face recognition system one would like to have an accurate as well as low cost setup for constructing 3D face model. In this paper, we use Profilometry approach to obtain a 3D face model.This method gives a low cost solution to the problem of acquiring 3D data and the 3D face models generated by this method are sufficiently accurate. We also develop an algorithm that can use the 3D face model generated by the above method for the recognition purpose.
Resumo:
Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.