446 resultados para SI0.5GE0.5 ALLOY
em Indian Institute of Science - Bangalore - Índia
Resumo:
Here we report on an x-ray specular reflectivity study of Ce-Si-Ge trilayers grown on Si(001) single-crystal substrate by ion beam sputtering deposition at various substrate temperatures. The electron-density profile of the trilayer as a function of depth, obtained from x-ray-reflectivity data, reveals an intermixing of Si and Ge. The x-ray-reflectivity data have been analyzed using a scheme based on the distorted-wave Born approximation, and the validity of the analysis scheme was checked using simulated data. Analyzed results provided information regarding interdiffusion in this system. We notice that although the Si-on-Ge interface is sharp, a Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface.
Resumo:
The results of an X-ray reflectivity study of thick AlAs-AlGaAs and thin GeSi-Ge multilayers grown using metal-organic vapour-phase epitaxy and ion-beam sputtering deposition techniques, respectively, are presented. Asymmetry in interfaces is observed in both of these semiconductor multilayers. It is also observed that although the Si-on-Ge interface is sharp, an Si0.4Ge0.6 alloy is formed at the Ge-on-Si interface. In the case of the III-V semiconductor, the AlAs-on-AlGaAs interface shows much greater roughness than that observed in the AlGaAs-on-AlAs interface. For thin multilayers it is demonstrated that the compositional profile as a function of depth can be obtained directly from the X-ray reflectivity data.
Resumo:
Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature.
Resumo:
We have synthesized FINEMET type amorphous Fe73.5Cu1Mo3Si13.5-xAlxB9 alloy by the single wheel melt spinning technique. The effect of Al substitution on the magnetic properties has been studied using a vibrating sample magnetometer, SQUID and Mossbauer spectroscopy. Magnetization and Curie temperature of the amorphous phase of the alloys were found to decrease with A] concentration. The results are attributed to the dilution effect of At on the magnetic moment of Fe and to the increase in Fe-Fe interaction distance resulting in the weakening of exchange interaction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The slow reaction in an Al-5 wt.% Ag alloy has been investigated by resistivity measurements. The "slope change" method gave an activation energy of 1.25 eV for silver diffusion during the slow reaction. The existence of an excess concentration of vacancies in equilibrium with the dislocation loops seems to be responsible for the slow reaction. The presence of silver inhibits the nucleation of dislocation loops by holding up the quenched-in vacancies in solution. There is no indication of the presence of a third stage in the low-temperature ageing process of this alloy.
Resumo:
The structural changes occurring during warm working of Cd-1.5 pct Zn alloy and their effect on the subsequent mechanical properties are studied. It is observed that changes in grain size and preferred orientation are important to a large extent in controlling the mechanical strength. The Hall-Petch slope,R decreases in the warm worked material while the friction stress, σo increases. The lowerR values are attributed to the development of a (101l) texture and the higher σo values are interpreted on the basis of changes in the basal texture.
Resumo:
The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper we explore the enhancement of solubility in a mechanically driven immiscible system experimentally using a mixture of Ag and Bi powders corresponding to a composition of Ag-5.1 at.% Bi. Increase in solubility can be correlated with the combination of sizes of both Ag and Bi at the nanometric scale. It is shown that complete solid solution of Ag-5.1 at.% Bi forms when the respective sizes of :Bi and Ag exceed 13 and 8 nm respectively. We have carried out a thermodynamic analysis of the size- and strain-dependent free energy landscape and compared the results to the initial mixture of microsized particles to rationalize the evolution of Ag solid solution. The agreement indicates that the emerging driving force for the formation of solid solution is primarily due to size reduction rather than the enhanced kinetics of mass transport due to mechanical driving. (c) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
Sn-Ag-Cu (SAC) solder alloys are the best Pb free alternative for electronic industry. Since their introduction, efforts are made to improve their efficacies by tuning the processing and composition to achieve lower melting point and better wettability. Nanostructured alloys with large boundary content are known to depress the melting points of metals and alloys. In this article we explore this possibility by processing prealloyed SAC alloys close to SAC305 composition (Sn-3wt%Ag-0.5wt%Cu) by mechanical milling which results in the formation of nanostructured alloys. Pulverisette ball mill (P7) and Vibratory ball mills are used to carry out the milling of the powders at room temperature and at lower temperatures (-104 A degrees C), respectively. We report a relatively smaller depression of melting point ranging up to 5 A degrees C with respect to original alloys. The minimum grain sizes achieved and the depression of melting point are similar for both room temperature and low-temperature processed samples. An attempt has been made to rationalize the observations in terms of the basic processes occurring during the milling.
Resumo:
Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.
Resumo:
Laser surface cladding was carried out on a creep-resistant MRI 153M magnesium alloy with a mixture of Al and Al2O3 powders using a pulsed Nd:YAG laser at scan speeds of 21, 42, 63 and 84 mm/s. The Al2O3 particles partially or completely melted during laser irradiation and re-solidified with irregular shapes in the size range of 5–60 µm along with a few islands as large as 500 µm, within the grain-refined Mg-rich dendritic matrix. More than an order of magnitude improvement in wear resistance after cladding was attributed to the presence of ultra-hard Al2O3 particles, increased solid solubility of Al and other alloying elements, and a very fine dendritic microstructure as a result of rapid solidification in the cladded layer. However, corrosion resistance of the laser cladded alloy was reduced by almost an order of magnitude compared to that of the as-cast alloy mainly due to the presence of cracks and pores in the cladded layer.