9 resultados para SHTB impact experiments
em Indian Institute of Science - Bangalore - Índia
Resumo:
Hydrophobic/superhydrophobic metallic surfaces prepared via chemical treatment are encountered in many industrial scenarios involving the impingement of spray droplets. The effectiveness of such surfaces is understood through the analysis of droplet impact experiments. In the present study, three target surfaces with aluminum (Al-6061) as base material-acid-etched, Octadecyl Trichloro Silane (OTS) coated, and acid-etched plus OTS-coated-were prepared. Experiments on the impact of inertia dominated water drops on these chemically modified aluminum surfaces were carried out with the objective to highlight the effect of chemical treatment on the target surfaces on key sub-processes occurring in drop impact phenomenon. High speed videos of the entire drop impact dynamics were captured at three Weber number (We) conditions representative of high We (We > 200) regime. During the early stages of drop spreading, the drop impact resulted in ejection of secondary droplets from spreading drop front on the etched surfaces resembling prompt splash on rough surfaces whereas no such splashing was observable on untreated aluminum surface. Prominent development of undulations (fingers) were observed at the rim of drop spreading on the etched surfaces; between the etched surfaces the OTS-coated surface showed a subdued development of fingers than the uncoated surface. The impacted drops showed intense receding on OTS-coated surfaces whereas on the etched surface a highly irregular receding, with drop liquid sticking to the surface, was observed. Quantitative analyses were performed to reveal the effect of target surface characteristics on drop impact parameters such as temporal variation of spread factor of drop lamella, temporal variation of average finger length during spreading phase, maximum drop spreading, time taken to attain maximum spreading, sensitivity of maximum spreading to We, number of fingers at maximum spreading, and average receding velocity of drop lamella. Existing models for maximum drop spreading showed reasonably good agreement with the experimental measurements on the target surfaces except the acid-etched surface. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.
Resumo:
In this work, static and drop-weight impact experiments, which have been conducted using three-point bend fracture specimens of a high-strength low-alloy steel, are analysed by performing finite-element simulations. The Gurson constitutive model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and is employed within the framework of a finite deformation plasticity theory. Two populations of second-phase particles are considered, including large inclusions which initiate voids at an early stage and small particles which require large strains to nucleate voids. The most important objective of the work is to assess quantitatively the effects of material inertia, strain rate sensitivity and local adiabatic temperature rise (due to conversion of plastic work into heat) on dynamic ductile crack initiation. This is accomplished by comparing the evolution histories of void volume fraction near the notch tip in the static analysis with the dynamic analyses. The results indicate that increased strain hardening caused by strain rate sensitivity, which becomes important under dynamic loading, plays a benign role in considerably slowing down the void growth rate near the notch tip. This is partially opposed by thermal softening caused by adiabatic heating near the notch tip.
Resumo:
This article deals with a simulation-based Study of the impact of projectiles on thin aluminium plates using LS-DYNA by modelling plates with shell elements and projectiles with solid elements. In order to establish the required modelling criterion in terms of element size for aluminium plates, a convergence Study of residual velocity has been carried Out by varying mesh density in the impact zone. Using the preferred material and meshing criteria arrived at here, extremely good prediction of test residual velocities and ballistic limits given by Gupta et al. (2001) for thin aluminium plates has been obtained. The simulation-based pattern of failure with localized bulging and jagged edge of perforation is similar to the perforation with petalling seen in tests. A number Of simulation-based parametric studies have been carried out and results consistent with published test data have been obtained. Despite the robust correlation achieved against published experimental results, it would be prudent to conduct one's own experiments, for a final correlation via the present modelling procedure and analysis with the explicit LS-DYNTA 970 solver. Hence, a sophisticated ballistic impact testing facility and a high-speed camera have been used to conduct additional tests on grade 1100 aluminium plates of 1 mm thickness with projectiles Of four different nose shapes. Finally, using the developed numerical simulation procedure, an excellent correlation of residual velocity and failure modes with the corresponding test results has been obtained.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are, in general, estimated by fitting the theoretical models to a field monitoring or laboratory experimental data. Double-reservoir diffusion (Transient Through-Diffusion) experiments are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. These design parameters are estimated by manual parameter adjusting techniques (also called eye-fitting) like Pollute. In this work an automated inverse model is developed to estimate the mass transport parameters from transient through-diffusion experimental data. The proposed inverse model uses particle swarm optimization (PSO) algorithm which is based on the social behaviour of animals for finding their food sources. Finite difference numerical solution of the transient through-diffusion mathematical model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation.The working principle of the new solver is demonstrated by estimating mass transport parameters from the published transient through-diffusion experimental data. The estimated values are compared with the values obtained by existing procedure. The present technique is robust and efficient. The mass transport parameters are obtained with a very good precision in less time
Resumo:
A detailed study on the removal of oxides of nitrogen (NOx) from the exhaust of a stationary diesel engine was carried out using non-thermal plasma (dielectric barrier discharge) process. The objective of the study was to explore the effect of different voltage energizations and exhaust composition on the NOx removal process. Three types of voltage energizations, namely AC, DC and Pulse were examined. Due to the ease of generation of high voltage AC/DC electrical discharges from automobile/Vehicular battery supply for possible retrofitting in exhaust cleaning circuit, it was found relevant to investigate individual energisation cases in detail for NOx removal. AC and Pulse energisations exhibit a superior NOx removal efficiency compared to DC energisation. However,Pulse energisation is found to be more energy efficient. Experiments were further carried out with filtered/ unfiltered (raw) exhaust under pulse energisations. The results were discussed with regard to NOx removal, energy consumption and formation of by-products.
Resumo:
Blends of conventional fuels such as Jet-A1 (aviation kerosene) and diesel with bio-derived components, referred to as biofttels, are gradually replacing the conventional fuels in aircraft and automobile engines. There is a lack of understanding on the interaction of spray drops of such biofuels with solid surfaces. The present study is an experimental investigation on the impact of biofuel drops onto a smooth stainless steel surface. The biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% aromatics. Biofuel drops were generated using a syringe-hypodermic needle arrangement. On demand, the needle delivers an almost spherical drop with drop diameter in the range 2.05-2.15 mm. Static wetting experiments show that the biofuel drop completely wets the stainless steel surface and exhibits an equilibrium contact angle of 5.6. High speed video camera was used to capture the impact dynamics of biofuel drops with Weber number ranging from 20 to 570. The spreading dynamics and maximum spreading diameter of impacting biofuel drops on the target surface were analyzed. For the impact of high Weber number biofuel drops, the spreading law suggests beta similar to tau(0.5) where beta is the spread factor and tau, the nondimensionalized time. The experimentally observed trend of maximum spread factor, beta(max) of camelina biofuel drop on the target surface with We compares well with the theoretically predicted trend from Ukiwe-Kwok model. After reaching beta(max), the impacting biofuel drop undergoes a prolonged sluggish spreading due to the high wetting nature of the camelina biofuel-stainless steel system. As a result, the final spread factor is found to be a little more than beta(max). (C) 2014 Elsevier Inc. All rights reserved.
Impact of diurnal forcing on intraseasonal sea surface temperature oscillations in the Bay of Bengal
Resumo:
The diurnal cycle is an important mode of sea surface temperature (SST) variability in tropical oceans, influencing air-sea interaction and climate variability. Upper ocean mixing mechanisms are significant at diurnal time scales controlling the intraseasonal variability (ISV) of SST. Sensitivity experiments using an Ocean General Circulation Model (OGCM) for the summer monsoon of the year 2007 show that incorporation of diurnal cycle in the model atmospheric forcings improves the SST simulation at both intraseasonal and shorter time scales in the Bay of Bengal (BoB). The increase in SST-ISV amplitudes with diurnal forcing is approximate to 0.05 degrees C in the southern bay while it is approximate to 0.02 degrees C in the northern bay. Increased intraseasonal warming with diurnal forcing results from the increase in mixed layer heat gain from insolation, due to shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly controlled by the strengthening of subsurface processes owing to the nocturnal deepening of mixed layer. In the southern bay, intraseasonal variability is mainly determined by the diurnal cycle in insolation, while in the northern bay, diurnal cycle in insolation and winds have comparable contributions. Temperature inversions (TI) develop in the northern bay in the absence of diurnal variability in wind stress. In the northern bay, SST-ISV amplification is not as large as that in the southern bay due to the weaker diurnal variability of mixed layer depth (MLD) limited by salinity stratification. Diurnal variability of model MLD is not sufficient to create large modifications in mixed layer heat budget and SST-ISV in the northern bay.
Resumo:
Experiments on micrograined (mg) and nanocrystalline (nc) Ni revealed strengthening and weakening following repeated dynamic impact. The strengthening in mg-Ni arises from intragranular dislocations without a significant change in grain size, whereas the weakening in nc-Ni is due to concurrent grain growth. The strength of mg and nc-Ni samples after deformation settles at similar to 900 MPa, with differing contributions from intragranular dislocations and grain sizes. (C) 2015 Elsevier B.V. All rights reserved.