322 resultados para SELECTIVE REDUCTION

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of benzyltriethylammonium borohydride and chlorotrimethylsilane (1:1) in dichloromethane (0-25°C) has been found to be a convenient reagent system for the selective reduction of carboxylic acids to alcohols.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An efficient aerobic reduction of olefins, internal as well as terminal, is developed using guanidine as an organocatalyst. A remarkable chemoselectivity in reduction has been demonstrated in the presence of a variety of functional groups and protective groups and a selective reduction of a terminal olefin in the presence of an internal olefin is revealed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both enantiomers of 1-phenylethane-1,2-diol were synthesized with good to excellent enantioselectivities via selective reduction of the phenylglyoxalates derived from bile acids, followed by reductive cleavage. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Total synthesis of the polyhydroxy caprolactam amide natural product, bengamide E, is accomplished starting from tartaric acid. Key reactions in the synthesis include desymmetrization of the bis(dimethylamide) unit of tartaric acid, Zn(BH4)2-mediated anti-selective reduction, and a HornerWadsworthEmmons olefination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An in situ seeding growth methodology towards the preparation of core-shell nanoparticles composed of noble metals has been developed by employing trimethylamine borane (TMAB) as the reducing agent. Being a weak reducing agent, TMAB is able to distinguish the smallest reduction potential window of any two metals which renders selective reduction of metal ions thus affording a core-shell architecture of the nanoparticles. A dramatic effect of solvent was noted during the reduction of Ag+ ions: an immediate reduction took place at room temperature when dry THF was used as solvent however, usage of wet THF (THF used directly from the bottle) brings out the reduction only at reflux conditions. In the case of Au and Pd nanoparticles, preparation was found to be independent of the quality of solvent used. Au nanoparticles are realized at room temperature whereas reflux conditions are required in the case of Pd nanoparticles. This difference in behavior of the monometallic nanoparticles was successfully exploited to construct different noble metal nanoparticles with core-shell architectures such as Au@Ag, Ag@Au, and Ag@Pd. Transformation of these core-shell nanoparticles to their thermodynamically stable alloy counterparts is also demonstrated under very mild conditions reported to date.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A variety of aliphatic and aromatic ketoaldehydes were reduced to the corresponding ketoalcohols with a mixture of sodium borohydride (1.2 equivalents) and sodium carbonate (sixfold molar excess) in water. Reactions were performed at room temperatures over (typically) 2 h, and yields of isolated products generally ranged from 70% to 85%. A biscarbonate-borane complex, (BH3)(2)CO2](2-) 2Na(+), possibly formed from the reagent mixture, is likely the active reductant. The moderated reactivity of this acylborane species would explain the chemoselectivity observed in the reactions. The readily available reagents and the mild aqueous conditions make for ease of operation and environmental compatibility, and make a useful addition to available methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When there is a variation in the quality of males in a population, multiple mating can lead to an increase in the genetic fitness of a female by reducing the variance of the progeny number. The extent of selective advantage obtainable by this process is investigated for a population subdivided into structured demes. It is seen that for a wide range of model parameters (deme size, distribution of male quality, local resource level), multiple mating leads to a considerable increase in the fitness. Frequency-dependent selection or a stable coexistence between polyandry and monandry can also result when the possible costs involved in multiple mating are taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioconversion of acyclic isoprenoids using a strain of Aspergillus niger results in hydroxylated metabolites with regio- and stereoselectivity. The organism carries out oxidation of the terminal allylic methyl group and the remote double bond in all the compounds tested (I-VII). However, these two activities seem to have preferential structural requirements. When an acyclic isoprenoid with a ketone functionality such as geranylacetone is used as the substrate, the organism also carries out the asymmetric reduction of the keto group. All the metabolites formed have been purified and characterized by conventional spectroscopic methods and quantification has been made by gas chromatographic analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very rapid (within 5 min), selective, single-step deoxygenation of layer- and chain-containing oxides, MoO3, CrO3, V2O5, alpha-VOPO4 . 2H(2)O and Ag6Mo10O33 has been accomplished using graphitic carbon in a microwave-assisted reaction. The products were found to be MoO2, Cr2O3, VO2, VPO4 and a mixture of (Ag + MoO2), respectively. Products were characterised by X-ray diffraction (XRD), differential scanning calorimetry (DSC), IR and electron paramagnetic resonance (EPR) spectroscopies. Although conventional methods of preparing these materials are tedious, the present method is simple, fast and yields very homogeneous products of good crystallinity. Our results reveal that while layer- and chain-containing oxides undergo rapid microwave-assisted carbothermal reduction, the non-layered materials do not. The high structural selectivity of these reactions is suggestive of the topochemical nature of the fast reduction process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we present a colorimetric detection method for Cr (VI) in aqueous solution based on as synthesized silver nanoparticles (Ag NPs) without surface functionalization. The method principle involves reduction of Cr (VI) to Cr (III) by excess reductant present in as synthesized Ag NP dispersion, and subsequent aggregation of Ag NPs by Cr (III) leading to red-shift of the surface plasmon resonance (SPR) peak. The UV-vis absorption spectra. Zeta potentials, dynamic light scattering measurements, and scanning electron microscopy (SEM) confirmed the aggregation of the Ag NPs. Under the optimized conditions, a good linear relationship (correlation coefficient r=0.981) was obtained between the ratio of the absorbance at 550 nm to that at 390 nm (A(550/390)) and the concentration of Cr (VI) over the range of 10(-3)-10(-9) M 50 mg/L to 50 ng/L]. The reported probe has a limit of detection down to 1 nM, which, to the best of our knowledge, is the lowest ever reported for the colorimetric detection of Cr (VI). Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to Cr (VI) over other tested heavy metal ions. (C) 2012 Elsevier BM. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we have synthesized Fe, Co and Ni doped BaTiO3 catalyst by a wet chemical synthesis method using oxalic acid as a chelating agent. The concentration of the metal dopant varies from 0 to 5 mol% in the catalysts. The physical and chemical properties of doped BaTiO3 catalysts were studied using various analytical methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area and Transmission electron microscopy (TEM). The acidic strength of the catalysts was measured using a n-butylamine potentiometric titration method. The bulk BaTiO3 catalyst exhibits a tetragonal phase with the P4mm space group. A structural transition from tetrahedral to cubic phase was observed for Fe, Co and Ni doped BaTiO3 catalysts with an increase in doped metal concentration from 1 to 5 mol%. The particle sizes of the catalysts were calculated from TEM images and are in the range of 30-80 nm. All the catalysts were tested for the catalytic reduction of nitrobenzene to azoxybenzene. The BaTiO3 catalyst was found to be highly active and less selective compared to the doped catalysts which are active and highly selective towards azoxybenzene. The increase in selectivity towards azoxybenzene is due to an increase in acidic strength and reduction ability of the doped metal. It was also observed that the nature of the metal dopant and their content at the B-site has an impact on the catalytic reduction of nitrobenzene. The Co doped BaTiO3 catalyst showed better activity with only 0.5 mol% doping than Fe and Ni doped BaTiO3 catalysts with maximum nitrobenzene conversion of 91% with 78% selectivity to azoxybenzene. An optimum Fe loading of 2.5 mol% in BaTiO3 is required to achieve 100% conversion with 93% selectivity whereas Ni with 5 mol% showed a conversion of 93% and a azoxybenzene selectivity of 84%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed study of tetrathiomolybdate mediated tandem regio- and stereoselective ring opening of aziridine, disulfide formation, reduction of disulfide bond and Michael reaction in a one-pot operation is reported. This constitutes four reactions that take place in one-pot operation. In the reaction of BnEt3N](4)MoS4 with an aziridine derived from cyclohexene and in the absence of Michael acceptor intermediates sulfonamidodisulfide and sulfonamidothiol were isolated and fully characterized. It has also been shown that it is possible to carry out selective opening of the aziridine ring in the presence of an epoxide. By incorporating a suitable Michael acceptor as part of the substrate, intramolecular 1,4-addition could be performed, to achieve the synthesis of sulfur containing acyclic, cyclic amino acid ester derivatives and thia-bicyclo3.3.1]nonane derivatives in good yields. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.