3 resultados para SEAM

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cricket is one of most popular games in the Asian subcontinent and its popularity is increasing every day. The issue of replacement of the cricket ball amidst the matches is always an uncomfortable situation for teams, umpires and even supporters. At present the basis of the replacement is solely on the judgement, experience and expertise of the umpires, which is subjective, controversial and debatable. In this paper, we have attempted a new approach to quantify the number of impacts or impact factor of a 4-piece leather ball used in the Intemational one-day and test cricket matches. This gives a more objective and scientific basis/ criteria for the replacement of the ball. Here, we have used a well known and widely used Thermal Infra-Red (TIR) imaging to capture the dynamics of the thermal profice of the cricket ball, which has been heated for about 15 seconds. The idea behind this approach is the simple observation that an old ball (ball with a few impacts) has different thermal signature/profice compared to the that of a new ball. This could be due to the change in the surface profice and internal structure, minor de-shaping, opening of seam etc. The TIR video and its frames, which is inherently noisy, are restored using Hebbian learning based FIR (sic), which performs optimal smoothing in relatively less number of iteration. We have focussed on the hottest region of the ball i.e., the inner core and tracked its thermal profice dynamics. Finally we have used multi layer perceptron model (MLP) to quantify the impact factor with fairly good accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use Monte Carlo simulations to obtain thermodynamic functions and correlation functions in a lattice model we propose for sponge phases. We demonstrate that the surface-density correlation function dominates the scattering only along the symmetric-sponge (SS) to asymmetric-sponge (AS) phase boundary but not the boundary between the sponge-with-free-edges (SFE) and symmetric-sponge phases. At this second thermodynamic transition the scattering is dominated instead by an edge-density (or seam-density) correlation function. This prediction provides an unambiguous diagnostic for experiments in search of the SS-SFE transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a technique for video object segmentation using patch seams across frames. Typically, seams, which are connected paths of low energy, are utilised for retargeting, where the primary aim is to reduce the image size while preserving the salient image contents. Here, we adapt the formulation of seams for temporal label propagation. The energy function associated with the proposed video seams provides temporal linking of patches across frames, to accurately segment the object. The proposed energy function takes into account the similarity of patches along the seam, temporal consistency of motion and spatial coherency of seams. Label propagation is achieved with high fidelity in the critical boundary regions, utilising the proposed patch seams. To achieve this without additional overheads, we curtail the error propagation by formulating boundary regions as rough-sets. The proposed approach out-perform state-of-the-art supervised and unsupervised algorithms, on benchmark datasets.