5 resultados para Ropes

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chilli-based repellents have shown promise as deterrents against crop-raiding elephants in Africa. We experimented with ropes coated with chilli-based repellent as a cheap alternative to existing elephant cropraid deterrent methods in India. Three locations (Buxa Tiger Reserve, Wyanad Wildlife Sanctuary and Hosur Forest Division) representing varying rainfall regimes from high to low, and with histories of intense elephant-agriculture conflict, were selected for the experiments that were conducted over 2-3 months during the pre-harvest period of the kharif season in late 2006. Chilli and tobacco powder mixed with waste oil was applied to ropes strung around agricultural fields of 1.4-5.5 km perimeter and elephant approaches were monitored. Elephants breached the rope fences a few times at all three study sites. Female-led herds were far more deterred (practically 100% reduction) than were solitary males (c. 50%) by the chilli-tobacco rope. Efficacy of this method as a deterrent was significantly better in the low-rainfall regime relative to medium and high-rainfall regimes. The initial promising results present a case for more rigorous experimentation; these would help determine if the elephants avoiding the rope are responding physiologically to the chilli-tobacco smell or merely reacting cautiously to a novel substance in their environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To realistically simulate the motion of flexible objects such as ropes, strings, snakes, or human hair,one strategy is to discretise the object into a large number of small rigid links connected by rotary or spherical joints. The discretised system is highly redundant and the rotations at the joints (or the motion of the other links) for a desired Cartesian motion of the end of a link cannot be solved uniquely. In this paper, we propose a novel strategy to resolve the redundancy in such hyper-redundant systems.We make use of the classical tractrix curve and its attractive features. For a desired Cartesian motion of the `head'of a link, the `tail' of the link is moved according to a tractrix,and recursively all links of the discretised objects are moved along different tractrix curves. We show that the use of a tractrix curve leads to a more `natural' motion of the entire object since the motion is distributed uniformly along the entire object with the displacements tending to diminish from the `head' to the `tail'. We also show that the computation of the motion of the links can be done in real time since it involves evaluation of simple algebraic, trigonometric and hyperbolic functions. The strategy is illustrated by simulations of a snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the motion of one dimensional flexible objects such as ropes, chains, etc., the assumption of constant length is realistic. Moreover,their motion appears to be naturally minimizing some abstract distance measure, wherein the disturbance at one end gradually dies down along the curve defining the object. This paper presents purely kinematic strategies for deriving length-preserving transformations of flexible objects that minimize appropriate ‘motion’. The strategies involve sequential and overall optimization of the motion derived using variational calculus. Numerical simulations are performed for the motion of a planar curve and results show stable converging behavior for single-step infinitesimal and finite perturbations 1 as well as multi-step perturbations. Additionally, our generalized approach provides different intuitive motions for various problem-specific measures of motion, one of which is shown to converge to the conventional tractrix-based solution. Simulation results for arbitrary shapes and excitations are also included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For one-dimensional flexible objects such as ropes, chains, hair, the assumption of constant length is realistic for large-scale 3D motion. Moreover, when the motion or disturbance at one end gradually dies down along the curve defining the one-dimensional flexible objects, the motion appears ``natural''. This paper presents a purely geometric and kinematic approach for deriving more natural and length-preserving transformations of planar and spatial curves. Techniques from variational calculus are used to determine analytical conditions and it is shown that the velocity at any point on the curve must be along the tangent at that point for preserving the length and to yield the feature of diminishing motion. It is shown that for the special case of a straight line, the analytical conditions lead to the classical tractrix curve solution. Since analytical solutions exist for a tractrix curve, the motion of a piecewise linear curve can be solved in closed-form and thus can be applied for the resolution of redundancy in hyper-redundant robots. Simulation results for several planar and spatial curves and various input motions of one end are used to illustrate the features of motion damping and eventual alignment with the perturbation vector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In gross motion of flexible one-dimensional (1D) objects such as cables, ropes, chains, ribbons and hair, the assumption of constant length is realistic and reasonable. The motion of the object also appears more natural if the motion or disturbance given at one end attenuates along the length of the object. In an earlier work, variational calculus was used to derive natural and length-preserving transformation of planar and spatial curves and implemented for flexible 1D objects discretized with a large number of straight segments. This paper proposes a novel idea to reduce computational effort and enable real-time and realistic simulation of the motion of flexible 1D objects. The key idea is to represent the flexible 1D object as a spline and move the underlying control polygon with much smaller number of segments. To preserve the length of the curve to within a prescribed tolerance as the control polygon is moved, the control polygon is adaptively modified by subdivision and merging. New theoretical results relating the length of the curve and the angle between the adjacent segments of the control polygon are derived for quadratic and cubic splines. Depending on the prescribed tolerance on length error, the theoretical results are used to obtain threshold angles for subdivision and merging. Simulation results for arbitrarily chosen planar and spatial curves whose one end is subjected to generic input motions are provided to illustrate the approach. (C) 2016 Elsevier Ltd. All rights reserved.