33 resultados para Role-related duties

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arylalkylcyclopropenethiones undergo highly regioselective photochemical a-cleavage via thioketene carbene intermediates, giving rise to products derived from the less stabilized carbene. UHF MIND0/3 calculations provide an insight into this unexpected regioselectivity. The nx* triplet of cyclopropenethione is calculated to have a highly unsymmetrical geometry with an elongated C-C bond, a delocalized thiaaUyl fragment, and a pyramidal radicaloid carbon (which eventually becomes the carbene center). From this molecular electronic structure, aryl group stabilization is expected to be more effective at the thiaallyl group rather than at the pyramidal radical center. Thus, the stability of the substituted triplet thione rather than that of the thioketene carbene determines the preferred regiochemistry of cleavage. The unusual structure of the cyclopropenethione triplet is suggested to be related to one of the Jahn-Teller distorted forms of the cyclopropenyl radical. An alternative symmetrical structure is adopted by the corresponding triplet of cyclopropenone, partly accounting for its differing photobehavior. A similar structural dichotomy is demonstrated for the corresponding radical anions as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleolin is a major nucleolar phosphoprotein involved in various steps of ribosome biogenesis in eukaryotic cells. As nucleolin plays a significant role in ribosomal RNA transcription we were interested in examining in detail the expression of nucleolin across different stages of spermatogenesis and correlate with the transcription status of ribosomal DNA in germ cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Checkpoint-1 kinase plays an important role in the G(2)M cell cycle control, therefore its inhibition by small molecules is of great therapeutic interest in oncology. In this paper, we have reported the virtual screening of an in-house library of 2499 pyranopyrazole derivatives against the ATP-binding site of Chk1 kinase using Glide 5.0 program, which resulted in six hits. All these ligands were docked into the site forming most crucial interactions with Cys87, Glu91 and Leu15 residues. From the observed results these ligands are suggested to be potent inhibitors of Chk1 kinase with sufficient scope for further elaboration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genus Salmonella includes many pathogens of great medical and veterinary importance. Bacteria belonging to this genus are very closely related to those belonging to the genus Escherichia. lacZYA operon and lacI are present in Escherichia coli, but not in Salmonella enterica. It has been proposed that Salmonella has lost lacZYA operon and lacI during evolution. In this study, we have investigated the physiological and evolutionary significance of the absence of lacI in Salmonella enterica. Using murine model of typhoid fever, we show that the expression of Lacl causes a remarkable reduction in the virulence of Salmonella enterica. Lacl also suppresses the ability of Salmonella enterica to proliferate inside murine macrophages. Microarray analysis revealed that Lacl interferes with the expression of virulence genes of Salmonella pathogenicity island 2. This effect was confirmed by RT-PCR and Western blot analysis. Interestingly, we found that SBG0326 of Salmonella bongori is homologous to lacI of Escherichia coli. Salmonella bongori is the only other species of the genus Salmonella and it lacks the virulence genes of Salmonella pathogenicity island 2. Overall, our results demonstrate that Lacl is an antivirulence factor of Salmonella enterica and suggest that absence of lacI has facilitated the acquisition of virulence genes of Salmonella pathogenicity island 2 in Salmonella enterica making it a successful systemic pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Confinement and Surface specific interactions call induce Structures otherwise unstable at that temperature and pressure. Here we Study the groove specific water dynamics ill the nucleic acid sequences, poly-AT and poly-GC, in long B-DNA duplex chains by large scale atomistic molecular dynamics simulations, accompanied by thermodynamic analysis. While water dynamics in the major groove remains insensitive to the sequence differences, exactly the opposite is true for the minor groove water. Much slower water dynamics observed in the minor grooves (especially in the AT minor) call be attributed to all enhanced tetrahedral ordering (< t(h)>) of water. The largest value of < t(h)> in the AT minor groove is related to the spine of hydration found in X-ray Structure. The calculated configurational entropy (S-C) of the water molecules is found to be correlated with the self-diffusion coefficient of water in different region via Adam-Gibbs relation D = A exp(-B/TSC), and also with < t(h)>.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal, spectroscopic and electrical properties of lead pyrophosphate glass prepared by melt quenching have been examined. A model based on the structural disproportionation of the P2O 7 4− ions has been proposed and is shown to consistently explain all the observations. The equilibrium of various anionic species has been discussed on the basis of their electronegativities which are in turn related to their basicities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of compounds with novel and improved physico-chemical properties as advanced functional materials with a specific application spectrum requires the knowledge about possible supramolecular packing motifs and their experimental control in crystalline lattice. Besides the structure of the individual molecule, non-covalent interactions play a significant role in the determination of molecular conformation, along with the formation of three-dimensional supramolecular architecture in a crystal as a requirement for molecular recognition processes, and the related bioactivity. Involvement of functional groups will contribute to the formation of a predefined packing motif due to their well-defined interactions. The strength and directionality of these interactions create characteristic packing motifs, which can be used for the design of supramolecular arrangements by the development of appropriate strategies for the precise control of their topology. Most relevant of these non-covalent interactions are stacking interactions and hydrogen bonds, which have been subjects of extensive study in the last two decades. In recent literature, substantial efforts have been put in by various researchers towards the understanding of interactions involving organic fluorine and the role they play in generating different packing motifs which guides assembling of molecules in the crystal lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics investigation of model diatomic species confined to the alpha-cages of zeolite NaY is reported. The dependence of self-diffusivity on the bond length of the diatomic species has been investigated. Three different sets of runs have been carried out. In the first set, the two atoms of the diatomic molecule interact with the zeolite atoms with equal strength (example, O-2, the symmetric case). In the second and third sets which correspond to asymmetric cases, the two atoms of the diatomic molecule interact with unequal strengths (example, CO). The result for the symmetric case exhibits a well-defined maximum in self-diffusivity for an intermediate bond length. In contrast to this, the intermediate asymmetry leads to a less pronounced maximum. For the large asymmetric case, the maximum is completely absent. These findings are analyzed by computing a number of related properties. These results provide a direct confirmation at the microscopic level of the suggestion by Derouane that the supermobility observed experimentally by Kemball has its origin in the mutual cancellation of forces. The maximum in diffusivity from molecular dynamics is seen at the value predicted by the levitation effect. Further, these findings suggest a role for symmetry in the existence of a diffusivity maximum as a function of diameter of the diffusant often referred to as the levitation effect. The nature of the required symmetry for the existence of anomalous diffusivity is interaction symmetry which is different from that normally encountered in crystallography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethidium bromide is one of the best known DNA intercalator. Upon intercalation inside DNA, the fluorescence due to ethidium bromide gets enhanced by many orders of magnitude. In this paper, we employed ethidium bromide as a probe for studying surfactant-DNA complexation using fluorescence spectroscopy and agarose gel electrophoresis. Surfactants of different charge types and chain lengths were used and the results were compared with that of the related small organic cations or salts under comparable conditions. The cationic surfactants induced destabilization of the ethidium bromide-DNA complex at concentrations in orders of magnitude lower than that of the small organic cations or salts. In contrast however, the anionic surfactants failed to promote any such destabilization of probe-DNA complex. DNA loses its ethidium bromide stainability in the presence of high concentration of cationic surfactant aggregates as revealed from agarose gel electrophoresis experiments. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA double-strand to single strand transition melting temperatures by a few degrees, in a concentration-dependent manner and at high surfactant concentration melting profiles got broadened.