22 resultados para Roig, Jaume, 1401-1478. Spill
em Indian Institute of Science - Bangalore - Índia
Resumo:
In achieving higher instruction level parallelism, software pipelining increases the register pressure in the loop. The usefulness of the generated schedule may be restricted to cases where the register pressure is less than the available number of registers. Spill instructions need to be introduced otherwise. But scheduling these spill instructions in the compact schedule is a difficult task. Several heuristics have been proposed to schedule spill code. These heuristics may generate more spill code than necessary, and scheduling them may necessitate increasing the initiation interval. We model the problem of register allocation with spill code generation and scheduling in software pipelined loops as a 0-1 integer linear program. The formulation minimizes the increase in initiation interval (II) by optimally placing spill code and simultaneously minimizes the amount of spill code produced. To the best of our knowledge, this is the first integrated formulation for register allocation, optimal spill code generation and scheduling for software pipelined loops. The proposed formulation performs better than the existing heuristics by preventing an increase in II in 11.11% of the loops and generating 18.48% less spill code on average among the loops extracted from Perfect Club and SPEC benchmarks with a moderate increase in compilation time.
Resumo:
Here, we report the clean and facile synthesis of Pt and Pd nanoparticles decorated on reduced graphene oxide (rGO) by the simultaneous reduction of graphene oxide (GO) and the metal ions in Mg/acid medium. As-generated Pt and Pd nanoparticles serve as a heterogeneous catalyst for the further reduction of the rGO by the hydrogen spill-over process. The C/O ratio is much higher as compared to the rGO obtained by the reduction of GO by only Mg/acid. Overall, the process is rapid, facile and green that does not require any toxic chemical agent or any rigorous chemical reactions. We perform the catalytic reduction of 4-nitophenol (4-NP) to 4-aminophenol (4-AP) at room temperature by Pd@rGO and Pt@rGO. The reduction is complete within 35 s for Pd@rGO and 60 s for Pt@rGO when 50 mu g of hybrid catalyst is used for 0.5 ml of 1 mM of 4-NP. In case of ethanol oxidation, the current density for Pd@rGO is comparable to commercial Pt/C but is doubled for Pt@rGO. Overall, both structures show highly stable catalytic activity compared to commercial Pt/C. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Mr= 361.3, triclinic, P1, a = 6-239 (2), b=11.280(2), c=12-451(2)A, a=101.2 (1), B= 92.3 (1), 7=99.9(1)°, V=844.123 A3, Z=2, Dx= 1.42, D m = 1.42 (1) Mg m -3, n(Cu Ka) = 1.5418 ,A., g = 1-102 mm -1, F(000) = 376, T= 293 K. Final R = 0.064 for 2150 observed reflections. The niflumic acid anions consist essentially of three planar groupings, namely, two six-membered rings and a carboxylate group attached to one of them. The invariant common structural features observed in the crystal structures of fenamates, namely, the coplanarity of the carboxyl group and the six-membered ring bearing it, and the internal hydrogen bond between the carboxyl group and the imino N atom that bridges the two sixmembered rings, are retained in the complex. The amino N atom is gauche with respect to the terminal hydroxyl group in the ethanolamine cation. The complexation between the two molecules is achieved through ionic and hydrogen-bonded interactions involving the carboxylate group in niflumic acid.
Resumo:
C13HlsN205 S, M r = 314.35, orthorhombic, P212121 with a = 39.526 (4), b = 6.607 (2), c = 5.661 (2) A, Z = 4, V = 1478.36 A 3, D c = 1.412 Mg m -3, Cu Ka radiation. Final R = 0.073 for 1154 observed counter reflections. The sulphur atom is in a pseudo-equatorial position with respect to the dihydrouracil ring. The sugar pucker is predominantly O(l')-exo unlike the C(3')-exo,C(4')-endo observed for 2',3'-O-isopropylideneuridine (ISPU). The fivemembered dioxolane ring has C(7) displaced by 0.497 (7)A from the best plane through atoms 0(2'), C(2'), C(3'), 0(3'), in contrast to ISPU where 0(3') shows the maximum deviation.
Resumo:
Pin-loaded holes commonly occur in engineering structures. However, accurate analysis of such holes presents formidable difficulties because of the load-dependent contact of the pin with the plate. Significant progress has recently been achieved in the analysis of holes in isotropic plates. This paper develops a simple and accurate method for the partial contact analysis of pin-loaded holes in composites. The method is based on an inverse formulation that seeks to determine loads in a given contact-separation configuration. A unified approach for all types of fit was used. Continuum solutions were obtained for infinitely large plates of various typical orthotropic properties with holes loaded by smooth rigid pins. These solutions were then compared with those for isotropic plates. The effects of orthotropy and the type of fit were studied through load-contact relationships, distribution of stresses and displacements, and their variation with load. The results are of direct relevance to the analysis and design of pin joints in composite plates.
Resumo:
X-ray photoelectron and Auger spectroscopic techniques have been employed to study surface segregation and oxidation of Cu-1 at%Sn, Cu-9at%Pd and Cu-25at%Pd alloys. Both Cu-Pd(9%) and Cu-Pd(25%) alloys show segregation of Cu when heated above 500 K. The Pd concentration was reduced by 50% at 750 K compared to the bulk composition; the enthalpy of segregation of Cu is around - 6kJ/mol. Sn segregation is seen from 470 to 650 K in the Cu-Sn(1%) alloy, and a saturation plateau of Sn concentration above 650 K is observed. Surface oxidation of Cu-Sn(1%) and Cu-Pd(9%) alloys at 500 K showed the formation of Cu2O on the surface with total suppression of Sn or Pd on the respective alloy surfaces. On vacuum annealing the oxidised Cu-Sn alloy surface at 550 K, a displacement reaction 2Cu2O+Sn→4Cu+SnO2 was observed. However, under similar annealing of the oxidised Cu-Pd(9%) alloy surface at 500 K, oxide oxygen was totally desorbed leaving the Cu-Pd alloy surface clean. In the case of the Cu-Pd(25%) alloy, only dissociatively chemisorbed oxygen was seen at 500 K which desorbed at the same temperature. Oxygen spill-over from copper to palladium is suggested as the mechanism of oxygen desorption from the oxidised Cu-Pd alloy surfaces.
Resumo:
C13HlsN205 S, M r = 314.35, orthorhombic, P212121 with a = 39.526 (4), b = 6.607 (2), c = 5.661 (2) A, Z = 4, V = 1478.36 A 3, D c = 1.412 Mg m -3, Cu Ka radiation. Final R = 0.073 for 1154 observed counter reflections. The sulphur atom is in a pseudo-equatorial position with respect to the dihydrouracil ring. The sugar pucker is predominantly O(l')-exo unlike the C(3')-exo,C(4')-endo observed for 2',3' O-isopropylideneuridine (ISPU). The fivemembered dioxolane ring has C(7) displaced by 0.497 (7)A from the best plane through atoms 0(2'), C(2'), C(3'), 0(3'), in contrast to ISPU where 0(3') shows the maximum deviation.
Resumo:
A ternary metal complex involving Vitamin B6 with the formula [Cu(bipy)(pn) (OH)]H2O (bipy = 2,2'²-bipyridine, PN = anionic pyridoxine) has been synthesized and studied in the solid state by means of spectroscopy and X-ray crystallography. The geometry around copper(II) is distorted square pyramidal, two oxygens from phenolic and 4-(hydroxymethyl) groups of pn, two nitrogens from bipy and an axial OH- ion forming the coordination sphere. In this structure pn exists in a new anionic form with deprotonation of the phenolic group. The structure also provides a rare example of monodentate hydroxyl coordination to copper.
Resumo:
MnO/C composite coatings were grown by the metalorganic chemical vapor deposition process on ceramic alumina in argon ambient. Characterization by various techniques confirms that these coatings are homogeneous composites comprising nanometer-sized MnO particles embedded in a matrix of nanometer-sized graphite. Components of the MnO/C composite coating crystalline disordered, but are electrically quite conductive. Resistance vs. temperature measurements show that coating resistance increases exponentially from a few hundred ohms at room temperature to a few megaohms at 30 K. Logarithmic plots of reduced activation energy vs. temperature show that the coating material undergoes a metal-insulator transition. The reduced activation energy exponent for the film under zero magnetic field was 2.1, which is unusually high, implying that conduction is suppressed at much faster rate than the Mott or the Efros-Shklovskii hopping mechanism. Magnetoconductance us. magnetic field plots obtained at various temperatures show a high magnetoconductance (similar to 28.8%) at 100 K, which is unusually large for a disordered system, wherein magnetoresistance is attributed typically to weak localization. A plausible explanation for the unusual behavior observed in the carbonaceous disordered composite material is proposed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A remarkable difference is observed in the rates of [3,3]-sigmatropic rearrangement of aryl 4,6-di-O-acetyl-2,3-dideoxy-D-erythro-hex-2-enopyranosides 1 and 2; the slower reactivity of the alpha-isomers is consistent with AM1 calculated transition state energetics of model systems.
Resumo:
Styryl coumarins generally yield centrosymmetric (alpha-mode, anti-HT) photodimers when subjected to irradiation in the solid state, However, the substitution of fluorine dramatically alters the packing mode and steers the molecules 4-(4-fluorostyryl)coumarin 1 and 4-(2-fluorostyryl)coumarin 2 to form a stereospecific photodimer, beta-mode, syn-HH across the styrenic double bond (yield 78-85%). The stereochemistry of the photodimer 2a has been established by X-ray crystallography. There is no evidence for the presence of C-H ... F interactions. The true nature of the weak atom-atom interactions called into play when fluorine is substituted is not clear, It is observed that the fluoro substituted compounds have greater crystal density than the corresponding unsubstituted ones.
Resumo:
Routing of floods is essential to control the flood flow at the flood control station such that it is within the specified safe limit. In this paper, the applicability of the extended Muskingum method is examined for routing of floods for a case study of Hirakud reservoir, Mahanadi river basin, India. The inflows to the flood control station are of two types-one controllable which comprises of reservoir releases for power and spill and the other is uncontrollable which comprises of inflow from lower tributaries and intermediate catchment between the reservoir and the flood control station. Muskingum model is improved to incorporate multiple sources of inflows and single outflow to route the flood in the reach. Instead of time lag and prismoidal flow parameters, suitable coefficients for various types of inflows were derived using Linear Programming. Presently, the decisions about operation of gates of Hirakud dam are being taken once in 12 h during floods. However, four time intervals of 24, 18, 12 and 6 h are examined to test the sensitivity of the routing time interval on the computed flood flow at the flood control station. It is observed that mean relative error decreases with decrease in routing interval both for calibration and testing phase. It is concluded that the extended Muskingum method can be explored for similar reservoir configurations such as Hirakud reservoir with suitable modifications. (C) 2010 International Association of Hydro-environment Engineering and Research. Asia Pacific Division. Published by Elsevier By. All rights reserved.
Resumo:
Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mechanism of target recognition and repair is not known completely. All these aspects of DNA damage and repair have been addressed here by employing high level density functional theory in gas phase and aqueous medium. It is found that the actual cause of O6MG mediated mutation may arise due to the fact that DNA polymerases incorporate thymine opposite to O6MG, misreading the resulting O6MG:T complex as an A:T base pair due to their analogous binding energies and structural alignments. It is further revealed that AGT mediated nucleotide flipping occurs in two successive steps. The intercalation of the finger residue Arg 128 into the DNA double helix and its interaction with the O6MG: C base pair followed by rotation of the O6MG nucleotide are found to be crucial for the damage recognition and nucleotide flipping.
Resumo:
This paper addresses a search problem with multiple limited capability search agents in a partially connected dynamical networked environment under different information structures. A self assessment-based decision-making scheme for multiple agents is proposed that uses a modified negotiation scheme with low communication overheads. The scheme has attractive features of fast decision-making and scalability to large number of agents without increasing the complexity of the algorithm. Two models of the self assessment schemes are developed to study the effect of increase in information exchange during decision-making. Some analytical results on the maximum number of self assessment cycles, effect of increasing communication range, completeness of the algorithm, lower bound and upper bound on the search time are also obtained. The performance of the various self assessment schemes in terms of total uncertainty reduction in the search region, using different information structures is studied. It is shown that the communication requirement for self assessment scheme is almost half of the negotiation schemes and its performance is close to the optimal solution. Comparisons with different sequential search schemes are also carried out. Note to Practitioners-In the futuristic military and civilian applications such as search and rescue, surveillance, patrol, oil spill, etc., a swarm of UAVs can be deployed to carry out the mission for information collection. These UAVs have limited sensor and communication ranges. In order to enhance the performance of the mission and to complete the mission quickly, cooperation between UAVs is important. Designing cooperative search strategies for multiple UAVs with these constraints is a difficult task. Apart from this, another requirement in the hostile territory is to minimize communication while making decisions. This adds further complexity to the decision-making algorithms. In this paper, a self-assessment-based decision-making scheme, for multiple UAVs performing a search mission, is proposed. The agents make their decisions based on the information acquired through their sensors and by cooperation with neighbors. The complexity of the decision-making scheme is very low. It can arrive at decisions fast with low communication overheads, while accommodating various information structures used for increasing the fidelity of the uncertainty maps. Theoretical results proving completeness of the algorithm and the lower and upper bounds on the search time are also provided.