76 resultados para Rock Physics

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical mechanism through which Ei-Nino and Southern Oscillation (ENSO) tends to produce deficient precipitation over Indian continent is investigated using both observations as well as a general circulation model. Both analysis of observations and atmospheric general circulation model (AGCM) study show that the planetary scale response associated with ENSO primarily influences the equatorial Indian Ocean region. Through this interaction it tends to favour the equatorial heat source, enhance precipitation over the equatorial Indian Ocean and indirectly cause a decrease in continental precipitation through induced subsidence. This situation is further complicated by the fact the regional tropospheric quasi biennial oscillation (QBO) has a bimodal structure over this region with large amplitude over the Indian continent. While the ENSO response has a quasi-four year periodicity and tends peak during beginning of the calendar year, the QBO mode tends to peak during northern summer. Thus, the QBO mode exerts a stronger influence on the interannual variability of the monsoon. The strength of the Indian monsoon in a given year depends on the combined effect of the ENSO and the QBO mode. Sines the two oscillations have disparate time scales, exact phase information of the two modes during northern summer is important in determining the Indian summer monsoon. The physical mechanism of the interannual variations of the Indian monsoon precipitation associated with ENSO presented here is similar to the physical process that cause intraseasonal 'active', 'break' oscillations of the monsoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study a two dimensional model is first developed to show the behaviour of dense non-aqueous phase liquids (DNAPL) within a rough fracture. To consider the rough fracture, the fracture is imposed with variable apertures along its plane. It is found that DNAPL follows preferential pathways. In next part of the study the above model is further extended for non-isothermal DNAPL flow and DNAPL-water interphase mass transfer phenomenon. These two models are then coupled with joint deformation due to normal stresses. The primary focus of these models is specifically to elucidate the influence of joint alteration due to external stress and fluid pressures on flow driven energy transport and interphase mass transfer. For this, it is assumed that the critical value for joint alteration is associated with external stress and average of water and DNAPL pressures in multiphase system and the temporal and spatial evolution of joint alteration are determined for its further influence on energy transport and miscible phase transfer. The developed model has been studied to show the influence of deformation on DNAPL flow. Further this preliminary study demonstrates the influence of joint deformation on heat transport and phase miscibility via multiphase flow velocities. It is seen that the temperature profile changes and shows higher diffusivity due to deformation and although the interphase miscibility value decreases but the lateral dispersion increases to a considerably higher extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a summary of the beyond the Standard Model (including model building working group of the WHEPP-X workshop held at Chennai from January 3 to 15, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A formula has been derived for the mean-square error in the phases of crystal reflections determined through the multiwavelength anomalous scattering method. The error is written in terms of a simple function of the positions in the complex plane of the 'centres' corresponding to the different wavelengths. For the case of three centres, the mean-square error is inversely proportional to the area of the triangle formed by them. The theoretical values are in good agreement with those obtained by earlier workers from computer simulations. The present method makes it easier to optimize the number and the actual wavelengths to be employed in the multiwavelength method. The maximum benefits of this method are expected in experiments employing synchrotron radiation or neutrons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the possibility of using W pair production and leptonic decay of one of the W's at the ILC with polarized beams as a probe of the Littlest Higgs Model. We consider cross-sections, polarization fractions of the W's, leptonic decay energy and angular distributions, and left-right polarization asymmetry as probes of the model. With parameter values allowed by present experimental constraints detectable effects on these observables at typical ILC energies of 500 GeV and 800 GeV will be present. Beam polarization is further found to enhance the sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1974, the Russian physicist Vitaly Ginzburg wrote a book entitled `Key Problems of Physics and Astrophysics' in which he presented a selection of important and challenging problems along with speculations on what the future holds. The selection had a broad range, was highly personalized, and was aimed at the general scientist, for whom it made very interesting reading

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An estimate of the groundwater budget at the catchment scale is extremely important for the sustainable management of available water resources. Water resources are generally subjected to over-exploitation for agricultural and domestic purposes in agrarian economies like India. The double water-table fluctuation method is a reliable method for calculating the water budget in semi-arid crystalline rock areas. Extensive measurements of water levels from a dense network before and after the monsoon rainfall were made in a 53 km(2)atershed in southern India and various components of the water balance were then calculated. Later, water level data underwent geostatistical analyses to determine the priority and/or redundancy of each measurement point using a cross-validation method. An optimal network evolved from these analyses. The network was then used in re-calculation of the water-balance components. It was established that such an optimized network provides far fewer measurement points without considerably changing the conclusions regarding groundwater budget. This exercise is helpful in reducing the time and expenditure involved in exhaustive piezometric surveys and also in determining the water budget for large watersheds (watersheds greater than 50 km(2)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physics at the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC/ILC Study Group so far is summarized in this report. Possible topics for future studies are outlined.