426 resultados para Ritz Method
em Indian Institute of Science - Bangalore - Índia
Resumo:
Estimates of flexural frequencies of clamped square plates are initially obtained by the modified Bolotin's method. The mode shapes in “each direction” are then determined and the product functions of these mode shapes are used as admissible functions in the Rayleigh-Ritz method. The data for the first twenty eigenvalues in each of the three (four) symmetric groups obtained by the (i) Bolotin, (ii) Rayleigh and (iii) Rayleigh-Ritz methods are reported here. The Rayleigh estimates are found to be much closer to the true eigenvalues than the Bolotin estimates. The present product functions are found to be much superior to the conventional beam eigenmodes as admissible functions in the Rayleigh-Ritz method of analysis.
Resumo:
The governing differential equation of the rotating beam reduces to that of a stiff string when the centrifugal force is assumed as constant. The solution of the static homogeneous part of this equation is enhanced with a polynomial term and used in the Rayleighs method. Numerical experiments show better agreement with converged finite element solutions compared to polynomials. Using this as an estimate for the first mode shape, higher mode shape approximations are obtained using Gram-Schmidt orthogonalization. Estimates for the first five natural frequencies of uniform and tapered beams are obtained accurately using a very low order Rayleigh-Ritz approximation.
Resumo:
Stability analysis is carried out considering free lateral vibrations of simply supported composite skew plates that are subjected to both direct and shear in-plane forces. An oblique stress component representation is used, consistent with the skew-geometry of the plate. A double series, expressed in Chebyshev polynomials, is used here as the assumed deflection surface and Ritz method of solution is employed. Numerical results for different combinations of side ratios, skew angle, and in-plane loadings that act individually or in combination are obtained. In this method, the in-plane load parameter is varied until the fundamental frequency goes to zero. The value of the in-plane load then corresponds to a critical buckling load. Plots of frequency parameter versus in-plane loading are given for a few typical cases. Details of crossings and quasi degeneracies of these curves are presented.
Resumo:
The classical Rayleigh-Ritz method with simple polynomials as admissible functions has been used for obtaining natural frequencies of transversely vibrating polar orthotropic annular plates. The method in conjunction with transformations introduced in the analysis has been found to be quite effective, particularly for large hole sizes. Estimates of natural frequencies corresponding to modes with one as well as two nodal diameters are obtained for the nine combinations of clamped, simply supported and free edge conditions and for various values of rigidity ratio and hole sizes. Based on the variation of eigenvalue parameter with rigidity ratio, the frequencies of these modes as well as those of axisymmetric modes have been expressed by means of simple formulae in terms of rigidity ratio and the frequencies of corresponding modes in the isotropic case. These formulae have been used in determining the fundamental frequencies of orthotropic plates.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.
Resumo:
Vibration problem of generally orthotropic plates with particular attention to plates of skew geometry is studied. The formulation is based on orthotropic plate theory with arbitrary orientation of the principal axes of orthotropy. The boundary conditions considered are combinations of simply supported, clamped, and free-edge conditions. Approximate solution for frequencies and modes is obtained by the Ritz method using products of appropriate beam characteristic functions as admissible functions. The variation of frequencies and modes with orientation of the axes of orthotropy is examined for different skew angles and boundary conditions. Features such as "crossings" and "quasi-degeneracies" of the frequency curves are found to occur with variation of the orientation of the axes of orthotropy for a given geometry of the skew plate. It is also found that for each combination of skew angle and side ratio, a particular orientation of the axes gives the highest value for the fundamental frequency of the plate.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.
Resumo:
Estimates of natural frequencies corresponding to axisymmetric modes of flexural vibration of polar orthotropic annular plates have been obtained for various combinations of clamped, simply supported and free edge conditions. A coordinate transformation in the radial direction has been used to obtain effective solutions by the classical Rayleigh-Ritz method. The analysis with this transformation has been found to be advantageous in computations, particularly for large hole sizes, over direct analysis. Numerical results have been obtained for various values of hole sizes and rigidity ratio. The eigenvalue parameter has been found to vary more or less linearly with the rigidity ratio. A comparison with the results for isotropic plates has brought out some interesting features.
Resumo:
By using the method of characteristics, the effect of footing-soil interface friction angle (delta) on the bearing capacity factor N-gamma was computed for a strip footing. The analysis was performed by employing a curved trapped wedge under the footing base; this wedge joins the footing base at a distance B-t from the footing edge. For a given footing width (B), the value of B-t increases continuously with a decrease in delta. For delta = 0, no trapped wedge exists below the footing base, that is, B-t/B = 0.5. On the contrary, with delta = phi, the point of emergence of the trapped wedge approaches toward the footing edge with an increase in phi. The magnitude of N-gamma increases substantially with an increase in delta/phi. The maximum depth of the plastic zone becomes higher for greater values of delta/phi. The results from the present analysis were found to compare well with those reported in the literature.
Resumo:
Careful study of various aspects presented in the note reveals basic fallacies in the concept and final conclusions.The Authors claim to have presented a new method of determining C-v. However, the note does not contain a new method. In fact, the method proposed is an attempt to generate settlement vs. time data using only two values of (t,8). The Authors have used a rectangular hyperbola method to determine C-v from the predicated 8- t data. In this context, the title of the paper itself is misleading and questionable. The Authors have compared C-v values predicated with measured values, both of them being the results of the rectangular hyperbola method.
Resumo:
Reaction of 6-acetoxy-5-bromomethylquinoline (1c) and 2-bromomethyl-4-(2'-pyridyl)phenyl acetate (2b) with tetrachlorocatechol in acetone in the presence of anhydrous potassium carbonate resulted in the formation of diastereomeric products 3c, 3d, 4e and 4f.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
Taylor (1948) suggested the method for determination of the settlement, d, corresponding to 90% consolidation utilizing the characteristics of the degree of consolidation, U, versus the square root of the time factor, square root of T, plot. Based on the properties of the slope of U versus square root of T curve, a new method is proposed to determine d corresponding to any U above 70% consolidation for evaluation of the coefficient of consolidation, Cn. The effects of the secondary consolidation on the Cn value at different percentages of consolidation can be studied. Cn, closer to the field values, can be determined in less time as compared to Taylor's method. At any U in between 75 and 95% consolidation, Cn(U) due to the new method lies in between Taylor's Cn and Casagrande's Cn.