2 resultados para Reuss

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall elastic response of a bundle of coated cylinders is a major aspect of thermal, nuclear and automotive engineering designs. This paper extends the previous work on tubular bundles to assess the effect of coating material and thickness. A major contribution from this paper is determining the overall transverse elastic response of coated thick cylinders by extending the Michell stress function approach in conjunction with contact mechanics. Finite element results using contact elements pave the way for applying the contact stress boundary conditions for Michell analysis. Theoretical and finite element analyses overall give results consistent with the previous work, and the results also fall within the well-established Voigt-Reuss bounds. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational models based on the phase-field method typically operate on a mesoscopic length scale and resolve structural changes of the material and furthermore provide valuable information about microstructure and mechanical property relations. An accurate calculation of the stresses and mechanical energy at the transition region is therefore indispensable. We derive a quantitative phase-field elasticity model based on force balance and Hadamard jump conditions at the interface. Comparing the simulated stress profiles calculated with Voigt/Taylor (Annalen der Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math Mech 9:49, 1929) and the proposed model with the theoretically predicted stress fields in a plate with a round inclusion under hydrostatic tension, we show the quantitative characteristics of the model. In order to validate the elastic contribution to the driving force for phase transition, we demonstrate the absence of excess energy, calculated by Durga et al. (Model Simul Mater Sci Eng 21(5):055018, 2013), in a one-dimensional equilibrium condition of serial and parallel material chains. To validate the driving force for systems with curved transition regions, we relate simulations to the Gibbs-Thompson equilibrium condition