90 resultados para Response Properties
em Indian Institute of Science - Bangalore - Índia
Resumo:
To calculate static response properties of a many-body system, local density approximation (LDA) can be safely applied. But, to obtain dynamical response functions, the applicability of LDA is limited bacause dynamics of the system needs to be considered as well. To examine this in the context of cold atoms, we consider a system of non-interacting spin4 fermions confined by a harmonic trapping potential. We have calculated a very important response function, the spectral intensity distribution function (SIDF), both exactly and using LDA at zero temperature and compared with each other for different dimensions, trap frequencies and momenta. The behaviour of the SIDF at a particular momentum can be explained by noting the behaviour of the density of states (DoS) of the free system (without trap) in that particular dimension. The agreement between exact and LDA SIDFs becomes better with increase in dimensions and number of particles.
Resumo:
The β-phase aging response of Cu–Al–Ni single crystal shape memory alloys (SMAs) within the temperature range of 473–573 K has been investigated. Alloys in austenitic (Cu–14.1Al–4Ni wt.%, alloy A) and martensitic (Cu–13.4Al–4Ni wt.%, alloy M) conditions at room temperature were considered. Aged samples show presence of β1′ and γ1′ martensites in both the alloys and formation of γ2 precipitates in the alloy A. The differential scanning calorimetry (DSC) thermograms of the aged samples show increase in transformation temperatures as well as transformation hysteresis with aging. Dynamic mechanical analysis (DMA) was conducted on both the alloys to ascertain the role of precipitates and martensitic transition on tan δ, which characterizes the damping behaviour of the material. With aging, a steady decrease in tan δ value was observed in both the alloys, which was attributed to the decrease in the number of interfaces per unit area with increasing aging temperature. Moreover, in alloy A, as the volume fraction of precipitate increases with aging, the movement of martensitic interfaces is restricted causing a decreased tan δ.
Resumo:
Facile synthesis of two new dimesitylboryl appended BODIPYs is reported. The two dyads have similar fluorescent chromophores but differ in their molecular conformations. They exhibit dual fluorescence, intramolecular energy transfer between boryl and BODIPY chromophores and different fluorescence responses (emission enhancement and quenching) upon fluoride binding.
Resumo:
The effect of doping trace amounts of noblemetals (Pt) on the gas sensing properties of chromium oxide thin films, is studied. The sensors are fabricated by depositing chromium oxide films on a glass substrate using a modified spray pyrolysis technique and characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The films are porous and nanocrystalline with an average crystallite size of similar to 30 nm. The typical p-type conductivity arises due to the presence of Cr vacancies, formed as a result of Cr non-stoichiometry, which is found to vary upon Pt doping. In order to analyze the effect of doping on the gas sensing properties, we have adopted a kinetic response analysis approach, which is based on Langmuir Adsorption isotherm (LA) theory. The sensor response is analyzed with equations obtained from LA theory and time constants as well as energies of adsorption-desorption are evaluated. It is seen that, Pt doping lowers the Schottky barrier height of the metal oxide semiconductor sensor from 222 meV to 172 meV. Subsequently the reduction in adsorption and desorption energies led to enhancement in sensor response and improvement in the kinetics of the sensor response i.e. the response time as well as recovery times of the sensor.
Resumo:
The hemagglutinin (H) protein of Rinderpest virus expressed by a recombinant buculovirus used as a vaccine produced high titres of neutralizing antibody to Rinderpest virus in the vaccinated cattle, comparable to the levels produced by live attenuated vaccine. The immunized cattle were protected against a vaccine-virus challenge, as demonstrated by the failure of development of antibodies to N protein of the vaccine virus. The lack of replication of vaccine virus in the immunized cattle indicated that they are capable of showing a protective response if challenged with a virulent virus.
Resumo:
A beam-column resting on continuous Winkler foundation and discrete elastic supports is considered. The beam-column is of variable cross-section and the variation of sectional properties along the axis of the beam-column is deterministic. Young's modulus, mass per unit length and distributed axial loadings of the beam-column have a stochastic distribution. The foundation stiffness coefficient of the Winkler model, the stiffnesses of discrete elastic supports, stiffnesses of end springs and the end thrust, are all considered as random parameters. The material property fluctuations and distributed axial loadings are considered to constitute independent, one-dimension uni-variate homogeneous real stochastic fields in space. The foundation stiffness coefficient, stiffnesses of the discrete elastic supports, stiffnesses of end springs and the end thrust are considered to constitute independent random variables. Static response, free vibration and stability behaviour of the beam-column are studied. Hamilton's principle is used to formulate the problem using stochastic FEM. Sensitivity vectors of the response and stability parameters are evaluated. Using these statistics of free vibration frequencies, mode shapes, buckling parameters, etc., are evaluated. A numerical example is given.
Resumo:
The influence of chemical specificity of hydrophilic surfaces on the structure of confined water in the subnanometer regime is investigated using grand canonical Monte Carlo Simulations. The structural variations for water confined between hydroxylated silica surfaces are contrasted with water confined between mica surfaces. Although both surfaces are hydrophilic, our Study shows that hydration of potassium ions on the mica surface has a strong influence on the water Structure and solvation force response of confined water. In contrast to the disrupted hydrogen bond network observed for water confined between Mica Surfaces, water between silica surfaces retains its hydrogen bond network displaying bulklike structural features down to surface separations as small as 0.45 nm. Hydrogen bonding of all invariant contact water layer with the surface silanol groups aids in maintaining a constant number of hydrogen bonds per water molecule for the silica surfaces. As a consequence water depletion and rearrangement upon decreasing confinement is a strong function of the hydrophilic surface specificity, particularly at smaller separations. An oscillatory solvation force response is only observed for water confined between Silica surfaces, and bulklike features are observed for both Surfaces above a surface separation of about 1.2 nm. We evaluate and contrast the water density, dipole moment distributions, pi pair correlation functions, and solvation forces as a function of the surface separation.
Resumo:
An experimental investigation into the effect of microstructural changes, which occur during post-extrusion annealing of a Mg based AZ21 alloy, on tensile and fatigue properties is conducted. Mechanical properties in the as-cast, as-extruded, and microstructural states that correspond to recovery, recrystallization and grain growth stages of annealing are compared. Results show that these microstructural changes do not alter the yield strength of the alloy markedly whereas significant differences were noted in the ultimate tensile strength as well as ductility. The initiation of abnormal grain growth (or secondary recrystallization) renders the tensile stress-strain response elastic perfectly plastic and results in a large drop in ductility, as high as similar to 60% during intermediate stages of abnormal grain growth, vis-A-vis the ductility of the as-extruded alloy. While the fatigue performance of all the wrought alloys is far superior to as expected, abnormal grain growth leads to a marked decrease in the endurance that of the as-cast alloy, limit. Possible microscopic origins of these are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We determine the electronic properties and dielectric response of zirconia (ZrO2) with oxygen vacancies (O vacancies) and Ti doping using first-principles density functional theory calculations based on pseudopotentials and a plane wave basis. We find significantly enhanced static dielectric response in zirconia with Ti doping and introduction of oxygen vacancies. Softening of phonon modes are responsible for the enhanced dielectric response of doped samples compared to pure zirconia.
Resumo:
We discover that hexagonal holmium copper titanate (Ho2CuTiO6), has a unique and highly desirable combination of high dielectric constant, low losses, very small temperature coefficient, and low frequency dependence. Our first-principles calculations indicate that these exceptional properties result from a size-difference at the Cu/Ti B-site that suppresses the expected ferroelectric transition, combined with the dominance of intermediate-frequency polar vibrational modes in the dielectric response. Our results suggest that the use of such B-site disorder in alloys of hexagonal transition-metal oxides should generally result in similar robust dielectrics.
Resumo:
A partially purified sheep liver enzyme that hydrolyzed dinucleotides at the pyrophosphate bond was obtained by solubilizing the 18,000g sediment with n-butanol and fractionating the solubilized enzyme with acetone. The enzyme activity when measured using FAD as substrate, (FAD → FMN + AMP), was optimal at pH 9.7 and temperatures between 30 °–36 ° and at 60 °. The rate of release of FMN with time occurred with an initial lag of 30 sec, a linear increase for 1 min, and a subsequent irregular rate. In the presence of orthophosphate (Pi; 10 μImage ), FMN was released at an uniformly continuous and enhanced rate. 32Pi was not incorporated into the substrate or products. Sodium arsenate counteracted the effects of Pi. The apparent Km and Vmax were 0.133 mImage and 100 units; and 0.133 mImage and 200 units, in the absence and presence of Pi, respectively. The temperature optimum was 42 ° in the presence of Pi.Negative cooperative interactions observed at low concentrations of FAD were abolished by the addition of Pi. The inhibition by AMP was sigmoid and Pi abolished this sigmoidal response. The enzyme hydrolyzed in addition to FAD, NAD+ and NADP+. Nucleoside triphosphates were potent inhibitors of the enzyme activity. The partial inhibition of the enzyme by o-phenanthroline and by p-hydroxymercuribenzoate could be reversed by Fe2+ ions and by reduced glutathione, respectively.
Resumo:
We describe an investigation of the structure and dielectric properties of MM'O-4 and MTiM'O-6 rutile-type oxides for M = Cr, Fe, Ga and M' = Nb. Ta and Sb. All the oxides adopt a disordered rutile structure (P4(2)/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies While both the MM'O-4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM'O-6 oxides for M = Fe, Cr and M' = Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500K (C) 2010 Elsevier Inc All rights reserved
Resumo:
An application of Artificial Neural Networks for predicting the stress-strain response of jointed rocks under different confining pressures is presented in this paper. Rocks of different compressive strength with different joint properties (frequency, orientation and strength of joints) are considered in this study. The database for training the neural network is formed from the results of triaxial compression tests on different intact and jointed rocks with different joint properties tested at different confining pressures reported by various researchers in the literature. The network was trained using a three-layered network with the feed-forward back propagation algorithm.About 85% of the data was used for training and the remaining 15% was used for testing the network. Results from the analyses demonstrated that the neural network approach is effective in capturing the stress-strain behaviour of intact rocks and the complex stress-strain behaviour of jointed rocks. A single neural network is demonstrated to be capable of predicting the stress-strain response of different jointed rocks, whose intact strength varies from 11.32 MPa to 123 MPa, spacing of joints varies from 10 cm to 100 cm. and confining pressures range from 0 to 13.8 MPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].