8 resultados para Respect for humanity
em Indian Institute of Science - Bangalore - Índia
Resumo:
A cut (A, B) (where B = V - A) in a graph G = (V, E) is called internal if and only if there exists a vertex x in A that is not adjacent to any vertex in B and there exists a vertex y is an element of B such that it is not adjacent to any vertex in A. In this paper, we present a theorem regarding the arrangement of cliques in a chordal graph with respect to its internal cuts. Our main result is that given any internal cut (A, B) in a chordal graph G, there exists a clique with kappa(G) + vertices (where kappa(G) is the vertex connectivity of G) such that it is (approximately) bisected by the cut (A, B). In fact we give a stronger result: For any internal cut (A, B) of a chordal graph, and for each i, 0 <= i <= kappa(G) + 1 such that vertical bar K-i vertical bar = kappa(G) + 1, vertical bar A boolean AND K-i vertical bar = i and vertical bar B boolean AND K-i vertical bar = kappa(G) + 1 - i. An immediate corollary of the above result is that the number of edges in any internal cut (of a chordal graph) should be Omega(k(2)), where kappa(G) = k. Prompted by this observation, we investigate the size of internal cuts in terms of the vertex connectivity of the chordal graphs. As a corollary, we show that in chordal graphs, if the edge connectivity is strictly less than the minimum degree, then the size of the mincut is at least kappa(G)(kappa(G)+1)/2 where kappa(G) denotes the vertex connectivity. In contrast, in a general graph the size of the mincut can be equal to kappa(G). This result is tight.
Resumo:
Life cycle assessment (LCA) is used to estimate a product's environmental impact. Using LCA during the earlier stages of design may produce erroneous results since information available on the product's lifecycle is typically incomplete at these stages. The resulting uncertainty must be accounted for in the decision-making process. This paper proposes a method for estimating the environmental impact of a product's life cycle and the associated degree of uncertainty of that impact using information generated during the design process. Total impact is estimated based on aggregation of individual product life cycle processes impacts. Uncertainty estimation is based on assessing the mismatch between the information required and the information available about the product life cycle in each uncertainty category, as well as their integration. The method is evaluated using pre-defined scenarios with varying uncertainty. DOI: 10.1115/1.4002163]
Resumo:
We assume the large-scale diffuse magnetic field of the Sun to originate from the poloidal component of a dynamo operating at the base of the convection zone, whereas the sunspots are due to the toroidal component. The evolution of the poloidal component is studied to model the poleward migration of the diffuse field seen on the solar surface and the polar reversal at the time of sunspot maxima (Dikpati and Choudhuri 1994, 1995).
Resumo:
For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.
Resumo:
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.