8 resultados para Representation and information retrieval technologies

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy, position, and momentum eigenstates of a para-Bose oscillator system were considered in paper I. Here we consider the Bargmann or the analytic function description of the para-Bose system. This brings in, in a natural way, the coherent states ||z;alpha> defined as the eigenstates of the annihilation operator ?. The transformation functions relating this description to the energy, position, and momentum eigenstates are explicitly obtained. Possible resolution of the identity operator using coherent states is examined. A particular resolution contains two integrals, one containing the diagonal basis ||z;alpha>and the other containing the pseudodiagonal basis ||z;alpha><−z;alpha||. We briefly consider the normal and antinormal ordering of the operators and their diagonal and discrete diagonal coherent state approximations. The problem of constructing states with a minimum value of the product of the position and momentum uncertainties and the possible alpha dependence of this minimum value is considered. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a general methodology for the synthesis of the external boundary of the workspaces of a planar manipulator with arbitrary topology. Both the desired workspace and the manipulator workspaces are identified by their boundaries and are treated as simple closed polygons. The paper introduces the concept of best match configuration and shows that the corresponding transformation can be obtained by using the concept of shape normalization available in image processing literature. Introduction of the concept of shape in workspace synthesis allows highly accurate synthesis with fewer numbers of design variables. This paper uses a new global property based vector representation for the shape of the workspaces which is computationally efficient because six out of the seven elements of this vector are obtained as a by-product of the shape normalization procedure. The synthesis of workspaces is formulated as an optimization problem where the distance between the shape vector of the desired workspace and that of the workspace of the manipulator at hand are minimized by changing the dimensional parameters of the manipulator. In view of the irregular nature of the error manifold, the statistical optimization procedure of simulated annealing has been used. A number of worked-out examples illustrate the generality and efficiency of the present method. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems should be consistent with environmental, economic and social sustainability in order to ensure regional sustainable development. This enhances both current and future potential to meet the human needs and aspirations. Sustainable development, a process of change, in which, the exploitation of resources, the direction of investments , the orientation of technological development and institutional change are in harmony. National energy programme should prioritize the development of renewable energy sources, which offer the potentially huge sources of primary energy. The path for sustainability in the next millennium is the low energy path through wise use of energy. Energy conservation and energy efficiency measures would certainly result in meeting the energy demand with as little as half the primary supply at current levels. This requires profound structural changes in socio-economic and institutional arrangements. Environmentally sound, technically and economically viable energy pathways will sustain human progress in the long term future giving a fair and equitable share of the underprivileged and poor of the developing countries. Renewable energy is considered by some as the only hope for the survival of planet yet by others it is viewed as a marginal resource with limited resource. All too often, however, the facts behind the role that renewable energy can, and will, play in the regional energy scene are disguised or ignored as rival camps distort the evidence to suit their own objectives. It was in the light of this confusion that the Energy Research Group at Centre for Ecological Sciences, Indian Institute of Science undertook investigation in Kolar and Uttara Kannada Districts in Karnataka State, India to identify the potential contribution of several types of renewable energy sources: Solar, Wind, Hydro, Bioenergy, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy harvesting sensor networks provide near perpetual operation and reduce carbon emissions thereby supporting `green communication'. We study such a sensor node powered with an energy harvesting source. We obtain energy management policies that are throughput optimal. We also obtain delay-optimal policies. Next we obtain the Shannon capacity of such a system. Further we combine the information theoretic and queuing theoretic approaches to obtain the Shannon capacity of an energy harvesting sensor node with a data queue. Then we generalize these results to models with fading and energy consumption in activities other than transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents classification, representation and extraction of deformation features in sheet-metal parts. The thickness is constant for these shape features and hence these are also referred to as constant thickness features. The deformation feature is represented as a set of faces with a characteristic arrangement among the faces. Deformation of the base-sheet or forming of material creates Bends and Walls with respect to a base-sheet or a reference plane. These are referred to as Basic Deformation Features (BDFs). Compound deformation features having two or more BDFs are defined as characteristic combinations of Bends and Walls and represented as a graph called Basic Deformation Features Graph (BDFG). The graph, therefore, represents a compound deformation feature uniquely. The characteristic arrangement of the faces and type of bends belonging to the feature decide the type and nature of the deformation feature. Algorithms have been developed to extract and identify deformation features from a CAD model of sheet-metal parts. The proposed algorithm does not require folding and unfolding of the part as intermediate steps to recognize deformation features. Representations of typical features are illustrated and results of extracting these deformation features from typical sheet metal parts are presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning from Positive and Unlabelled examples (LPU) has emerged as an important problem in data mining and information retrieval applications. Existing techniques are not ideally suited for real world scenarios where the datasets are linearly inseparable, as they either build linear classifiers or the non-linear classifiers fail to achieve the desired performance. In this work, we propose to extend maximum margin clustering ideas and present an iterative procedure to design a non-linear classifier for LPU. In particular, we build a least squares support vector classifier, suitable for handling this problem due to symmetry of its loss function. Further, we present techniques for appropriately initializing the labels of unlabelled examples and for enforcing the ratio of positive to negative examples while obtaining these labels. Experiments on real-world datasets demonstrate that the non-linear classifier designed using the proposed approach gives significantly better generalization performance than the existing relevant approaches for LPU.