133 resultados para Relative construction
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper presents the results of shaking table tests on model reinforced soil retaining walls in the laboratory. The influence of backfill relative density on the seismic response was studied through a series of laboratory model tests on retaining walls. Construction of model retaining walls in the laminar box mounted on shaking table, instrumentation and results from the shaking table tests are described in detail. Three types of walls: wrap- and rigid-faced reinforced soil walls and unreinforced rigid-faced walls constructed to different densities were tested for a relatively small excitation. Wrap-faced walls are further tested for higher base excitation at different frequencies and relative densities. It is observed from these tests that the effect of backfill density on the seismic performance of reinforced retaining walls is pronounced only at very low relative density and at the higher base excitation. The walls constructed with higher backfill relative density showed lesser face deformations and more acceleration amplifications compared to the walls constructed with lower densities when tested at higher base excitation. The response of wrap- and rigid-faced retaining walls is not much affected by the backfill relative density when tested at smaller base excitation. The effects of facing rigidity were evaluated to a limited extent. Displacements in wrap-faced walls are many times higher compared to rigid-faced walls. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls constructed to when subjected to smaller and higher base excitation for the range of relative density employed in the testing program. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The cyclic difference sets constructed by Singer are also examples of perfect distinct difference sets (DDS). The Bose construction of distinct difference sets, leads to a relative difference set. In this paper we introduce the concept of partial relative DDS and prove that an optical orthogonal code (OOC) construction due to Moreno et. al., is a partial relative DDS. We generalize the concept of ideal matrices previously introduced by Kumar and relate it to the concepts of this paper. Another variation of ideal matrices is introduced in this paper: Welch ideal matrices of dimension n by (n - 1). We prove that Welch ideal matrices exist only for n prime. Finally, we recast an old conjecture of Golomb on the Welch construction of Costas arrays using the concepts of this paper. This connection suggests that our construction of partial relative difference sets is in a sense, unique
Resumo:
Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used fbr masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner.
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
Some of the well known formulations for topology optimization of compliant mechanisms could lead to lumped compliant mechanisms. In lumped compliance, most of the elastic deformation in a mechanism occurs at few points, while rest of the mechanism remains more or less rigid. Such points are referred to as point-flexures. It has been noted in literature that high relative rotation is associated with point-flexures. In literature we also find a formulation of local constraint on relative rotations to avoid lumped compliance. However it is well known that a global constraint is easier to handle than a local constraint, by a numerical optimization algorithm. The current work presents a way of putting global constraint on relative rotations. This constraint is also simpler to implement since it uses linearized rotation at the center of finite-elements, to compute relative rotations. I show the results obtained by using this constraint oil the following benchmark problems - displacement inverter and gripper.
Resumo:
The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. This paper describes a near-optimal two-step algorithm that constructs the Reeb graph of a Morse function defined over manifolds in any dimension. The algorithm first identifies the critical points of the input manifold, and then connects these critical points in the second step to obtain the Reeb graph. A simplification mechanism based on topological persistence aids in the removal of noise and unimportant features. A radial layout scheme results in a feature-directed drawing of the Reeb graph. Experimental results demonstrate the efficiency of the Reeb graph construction in practice and its applications.
Resumo:
In order to investigate the factors determining the relative stabilities of layered perovskite and pyrochlore structures of transition metal oxides containing trivalent bismuth, several ternary and quaternary oxides have been investigated. While d0 cations stabilize the layered perovskite structure, cations containing partially-filled d orbitals (which suppress ferroelectric distortion of MO6 octahedra) seem to favor pyrochlore-related structures. Thus, the vanadium analogue of the layered perovskite Bi4Ti3O12 cannot be prepared; instead the composition consists of a mixture of pyrochlore-type Bi1.33V2O6, Bi2O3, and Bi metal. The distortion of Bi1.33V2O6 to orthorhombic symmetry is probably due to an ordering of anion vacancies in the pyrochlore structure. None of the other pyrochlores investigated, Bi2NbCrO7, Bi2NbFeO7, TlBiM2O7 (M = Nb, Ta), shows evidence for cation ordering in the X-Ray diffraction patterns, as indeed established by structure refinement of TlBiNb2O7.
Resumo:
In this paper, we generalize the existing rate-one space frequency (SF) and space-time frequency (STF) code constructions. The objective of this exercise is to provide a systematic design of full-diversity STF codes with high coding gain. Under this generalization, STF codes are formulated as linear transformations of data. Conditions on these linear transforms are then derived so that the resulting STF codes achieve full diversity and high coding gain with a moderate decoding complexity. Many of these conditions involve channel parameters like delay profile (DP) and temporal correlation. When these quantities are not available at the transmitter, design of codes that exploit full diversity on channels with arbitrary DIP and temporal correlation is considered. Complete characterization of a class of such robust codes is provided and their bit error rate (BER) performance is evaluated. On the other hand, when channel DIP and temporal correlation are available at the transmitter, linear transforms are optimized to maximize the coding gain of full-diversity STF codes. BER performance of such optimized codes is shown to be better than those of existing codes.
Resumo:
An approach towards the highly functionalized bicyclo[3.3.1]nonan-9-one core of the complex PPAP-based natural product hyperforin, with the full complement of prenyl substituents in required stereo-disposition, is delineated.
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V, E). The expected running time of our algorithm is (O) over tilde (mc) where vertical bar E vertical bar = m and c is the maximum u-v edge connectivity, where u, v is an element of V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n - 1; so the expected run-ning time of our algorithm for simple unweighted graphs is (O) over tilde (mn). All the algorithms currently known for constructing a Gomory-Hu tree [8, 9] use n - 1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest (O) over tilde (n(20/9)) max flow algorithm due to Karger and Levine[11] yields the current best running time of (O) over tilde (n(20/9)n) for Gomory-Hu tree construction on simple unweighted graphs with m edges and n vertices. Thus we present the first (O) over tilde (mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs. We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S subset of V can be reused for computing a minimum Steiner cut for certain Steiner sets S' subset of S.
Resumo:
It is shown that in the finite-element formulation of the general quasi-harmonic equation using tetrahedral elements, for every member of the element family there exists just one numerical universal matrix indpendent of the size, shape and material properties of the element. Thus the element matrix is conveniently constructed by manipulating this single matrix along with a set of reverse sequence codes at the same time accounting for the size, shape and material properties in a simple manner.
Resumo:
The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the Volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distribution or pre-collisional normal relative velocities (along the line Joining the centres of the particles) is Found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in all elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of roughd particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles.Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were round to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations.
Resumo:
The concept of orbital compatibility is used to explain the relative energies of different macropolyhedral structural patterns such as closo-closo, closo-nido, and nido-nido. A large polyhedral borane condenses preferentially with a smaller polyhedron owing to orbital compatibility. Calculations carried out at the B3LYP/6-31G* level show that the macropolyhedron closo(12)-closo(6) is the most preferred structural pattern among the face-sharing closo-closo systems. The relative stabilities of four-shared-atom closo-closo, three-shared-atom closo-closo, three-shared-atom closo-nido, edge-sharing closo-nido, and edge-sharing nido-nido structures are in accordance with the difference in the number of vertices of the individual polyhedra of the macropolyhedra. When the difference in the number of vertices of the individual polyhedra is large, the stability of the macropolyhedra is also large. Calculations further show that the orbital compatibility plays an important role in deciding the stability of the macropolyhedral boranes with more than two polyhedral units. The dependence of the orbital compatibility on the relative stability of the macropolyhedron varies with other factors such as inherent stability of the individual polyhedron and steric factors.
Resumo:
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.
Resumo:
For a feedback system consisting of a transfer function $G(s)$ in the forward path and a time-varying gain $n(t)(0 \leqq n(t) \leqq k)$ in the feedback loop, a stability multiplier $Z(s)$ has been constructed (and used to prove stability) by Freedman [2] such that $Z(s)(G(s) + {1 / K})$ and $Z(s - \sigma )(0 < \sigma < \sigma _ * )$ are strictly positive real, where $\sigma _ * $ can be computed from a knowledge of the phase-angle characteristic of $G(i\omega ) + {1 / k}$ and the time-varying gain $n(t)$ is restricted by $\sigma _ * $ by means of an integral inequality. In this note it is shown that an improved value for $\sigma _ * $ is possible by making some modifications in his derivation. ©1973 Society for Industrial and Applied Mathematics.