64 resultados para Relação G
em Indian Institute of Science - Bangalore - Índia
Resumo:
There is an error in the JANAF (1985) data on the standard enthalpy, Gibbs energy and equilibrium constant for the formation of C2H2 (g) from elements. The error has arisen on account of an incorrect expression used for computing these parameters from the heat capacity, entropy and the relative heat content. Presented in this paper are the corrected values of the enthalpy, the Gibbs energy of formation and the corresponding equilibrium constant.
Resumo:
Protocols for secure archival storage are becoming increasingly important as the use of digital storage for sensitive documents is gaining wider practice. Wong et al.[8] combined verifiable secret sharing with proactive secret sharing without reconstruction and proposed a verifiable secret redistribution protocol for long term storage. However their protocol requires that each of the receivers is honest during redistribution. We proposed[3] an extension to their protocol wherein we relaxed the requirement that all the recipients should be honest to the condition that only a simple majority amongst the recipients need to be honest during the re(distribution) processes. Further, both of these protocols make use of Feldman's approach for achieving integrity during the (redistribution processes. In this paper, we present a revised version of our earlier protocol, and its adaptation to incorporate Pedersen's approach instead of Feldman's thereby achieving information theoretic secrecy while retaining integrity guarantees.
Resumo:
An A-DNA type double helical conformation was observed in the single crystal X-ray structure of the octamer d(G-G-T-A-T-A-C-C), 1, and its 5-bromouracil-containing analogue, 2. The structure of the isomorphous crystals (space group P61) was solved by a search technique based on packing criteria and R-factor calculations, with use of only low order data. At the present stage of refinement the R factors are 31 % for 1 and 28 % for 2 at a resolution of 2.25 A (0.225 nm). The molecules interact through their minor grooves by hydrogen bonding and base to sugar van der Waals contacts. The stable A conformation observed in the crystal may have some structural relevance to promoter regions where the T-A-T-A sequence is frequently found.
Resumo:
The crystal structures of the synthetic self-complementary octamer d(G-G-T-A-T-A-C-C) and its 5-bromouracil-containing analogue have been refined to R values of 20% and 14% at resolutions of 1·8 and 2·25 Å, respectively. The molecules adopt an A-DNA type double-helical conformation, which is minimally affected by crystal forces. A detailed analysis of the structure shows a considerable influence of the nucleotide sequence on the base-pair stacking patterns. In particular, the electrostatic stacking interactions between adjacent guanine and thymine bases produce symmetric bending of the double helix and a major-groove widening. The sugar-phosphate backbone appears to be only slightly affected by the base sequence. The local variations in the base-pair orientation are brought about by correlated adjustments in the backbone torsion angles and the glycosidic orientation. Sequence-dependent conformational variations of the type observed here may contribute to the specificity of certain protein-DNA interactions.
Resumo:
A closed-loop steering logic based on an optimal (2-guidance is developed here. The guidance system drives the satellite launch vehicle along a two- or three- dimensional trajectory for placing the payload into a specified circular orbit. The modified g-guidance algorithm makes use of the optimal required velocity vector, which minimizes the total impulse needed for an equivalent two-impluse transfer from the present state to the final orbit. The required velocity vector is defined as velocity of the vehicle on the hypothetical transfer orbit immediately after the application of the first impulse. For this optimal transfer orbit, a simple and elegant expression for the Q-matrix is derived. A working principle for the guidance algorithm in terms of the major and minor cycles, and also for the generation of the steering command, is outlined.
Resumo:
S-Labeled nucleosides of E. coli tRNA and some of the derivatives of thionucleosides were separated on Bio-Gel P-2 and Sephadex G-10 columns employing buffers of low salt concentration and high pH.
Resumo:
Achieving stabilization of telomeric DNA in G-quadruplex conformation by Various organic compounds has been an important goal for the medicinal chemists seeking to develop new anticancer agents. Several compounds are known to stabilize G-quadruplexes. However, relatively few are known to induce their formation and/or alter the topology, of the preformed quadruplex DNA. Herein, four compounds having the 1,3-phenylene-bis(piperazinyl benzimidazole) unit as a basic skeleton have been synthesized, and their interactions with the 24-mer telomeric DNA sequences from Tetrahymena thermophilia d(T(2)G(4))(4) have been investigated using high-resolution techniques Such as circular dichroism (CD) spectropolarimetry, CD melting, emission spectroscopy, and polyacrylamide gel electrophoresis. The data obtained, in the presence of one of three ions (Li+, Na+, or K+), indicate that all the new compounds have a high affinity for G-quadruplex DNA, and the strength of the binding with G-quadruplex depends on (1) phenyl ring substitution, (ii) the piperazinyl side chain, and (iii) the type of monovalent cation present in the buffer. Results further Suggest that these compounds are able to abet the conversion of the Intramolecular quadruplex into parallel stranded intermolecular G-quadruplex DNA. Notably, these compounds are also capable of inducing and stabilizing the parallel stranded quadruplex from randomly structured DNA in the absence of any stabilizing cation. The kinetics of the structural changes Induced by these compounds could be followed by recording the changes in the CD signal as a function of time. The implications of the findings mentioned above are discussed in this paper.
Resumo:
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b’ with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.
Resumo:
Streptococcus pyogenes [group A streptococcus (GAS)], a human pathogen, and Streptococcus dysgalactiae subsp. equisimilis [human group G and C streptococcus (GGS/GCS)] are evolutionarily related, share the same tissue niche in humans, exchange genetic material, share up to half of their virulence-associated genes and cause a similar spectrum of diseases. Yet, GGS/GCS is often considered as a commensal bacterium and its role in streptococcal disease burden is under-recognized. While reports of the recovery of GGS/GCS from normally sterile sites are increasing, studies describing GGS/GCS throat colonization rates relative to GAS in the same population are very few. This study was carried out in India where the burden of streptococcal diseases, including rheumatic fever and rheumatic heart disease, is high. As part of a surveillance study, throat swabs were taken from 1504 children attending 7 municipal schools in Mumbai, India, during 2006-2008. GAS and GGS/GCS were identified on the basis of beta-haemolytic activity, carbohydrate group and PYR test, and were subsequently typed. The GGS/GCS carriage rate (1166/1504, 11%) was eightfold higher than the GAS carriage (22/1504, 1.5%) rate in this population. The 166 GGS/GCS isolates collected represented 21 different emm types (molecular types), and the 22 GAS isolates represented 15 different emm types. Although the rate of pharyngitis associated with GGS/GCS is marginally lower than with GAS, high rates of throat colonization by GGS/GCS underscore its importance in the pathogenesis of pharyngitis.
Resumo:
This study discusses grafting of methyl methacrylate units from thepolymeric soybean oil peroxide to produce poly(soybean oil-graft-methyl methacrylate) (PSO-g-PMMA). The degradation of this copolymer in solution was evaluated in the presence of different lipases, viz Candida rugosa (CR), Lipolase 100T (LP), Novozym 435 (N435) and Porcine pancreas (PP), at different temperatures The copolymer degraded by specific chain end scission and the mass fraction of the specific product evolved was determined The degradation was modeled using continuous distribution kinetics to determine the rate coefficients ofmenzymatic chain end scission and deactivation of the enzyme The enzymes, CR. LP and N435 exhibited maximum activity for the degradation of PSO-g-PMMA at 60 degrees C, while PP was most active at 50 degrees C. The thermal degradability of the copolymer, assessed by thermo-gravimetry, indicated that the activation energy of degradation of the copolymer was 154 kJ mol(-1), which was lesser than that of the PMMA homopolymer.
Resumo:
A temperature dependence has been observed in the spin-Hamiltonian parameters of the Cu++ ion in a tetragonal crystal field and the variation has been interpreted in terms of vibronic effects.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.