155 resultados para Reinforcement material

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recycling plastic water bottles has become one of the major challenges world wide. The present study provides an approach for the use of plastic waste as reinforcement material in soil, which can be used for ground improvement, subbases, and subgrade preparation in road construction. The experimental results are presented in the form of stress-strain-pore water pressure response and compression paths. On the basis of experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with the addition of a small percentage of plastic waste to the soil. In this paper, an analytical model is proposed to evaluate the response of plastic waste mixed soil. It is noted that the model captures the stress-strain and pore water pressure response of all percentages of plastic waste adequately. The paper also provides a comparative study of failure stress obtained from different published models and the proposed model, which are compared with experimental results. The improvement in strength attributable to the inclusion of plastic waste can be advantageously used in ground improvement projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of laboratory model loading tests and numerical studies carried out on square footings supported on geosynthetic reinforced sand beds. The relative performance of different forms of geosynthetic reinforcement (i.e. geocell, planar layers and randomly distributed mesh elements) in foundation beds is compared; using same quantity of reinforcement in each test. A biaxial geogrid and a geonet are used for reinforcing the sand beds. Geonet is used in two forms of reinforcement, viz. Planar layers and geocell, while the biaxial geogrid was used in three forms of reinforcement, viz. planar layers, geocell and randomly distributed mesh elements. Laboratory load tests on unreinforced and reinforced footings are simulated in a numerical model and the results are analyzed to understand the distribution of displacements and stresses below the footing better. Both the experimental and numerical studies demonstrated that the geocell is the most advantageous form of soil reinforcement technique of those investigated, provided there is no rupture of the material during loading. Geogrid used in the form of randomly distributed mesh elements is found to be inferior to the other two forms. Some significant observations on the difference in reinforcement mechanism for different forms of reinforcement are presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effect of particle size of sand and the surface asperities of reinforcing material on their interlocking mechanism and its influence on the interfacial shear strength under direct sliding condition. Three sands of different sizes with similar morphological characteristics and four different types of reinforcing materials with different surface features were used in this study. Interface direct shear tests on these materials were performed in a specially developed symmetric loading interface direct shear test setup. Morphological characteristics of sand particles were determined from digital image analysis and the surface roughness of the reinforcing materials was measured using an analytical expression developed for this purpose. Interface direct shear tests at three different normal stresses were carried out by shearing the sand on the reinforcing material fixed to a smooth surface. Test results revealed that the peak interfacial friction and dilation angles are hugely dependent upon the interlocking between the sand particles and the asperities of reinforcing material, which in turn depends on the relative size of sand particles and asperities. Asperity ratio (AS/D-50) of interlocking materials, which is defined as the ratio of asperity spacing of the reinforcing material and the mean particle size of sand was found to govern the interfacial shear strength with highest interfacial strength measured when the asperity ratio was equal to one, which represents the closest fitting of sand particles into the asperities. It was also understood that the surface roughness of the reinforcing material influences the shear strength to an extent, the influence being more pronounced in coarser particles. Shear bands in the interface shear tests were analysed through image segmentation technique and it was observed that the ratio of shear band thickness (t) to the median particle size (D-50) was maximum when the AS/D-50 was equal to one. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex oxalate precursor, CaCu3(TiO)(4)(C2O4)(8)center dot 9H(2)O, (CCT-OX), was synthesized and the precipitate that obtained was confirmed to be monophasic by the wet chemical analyses, X-ray diffraction, FTIR absorption and TG/DTA analyses. The thermal decomposition of this oxalate precursor led to the formation of phase-pure calcium copper titanate, CaCu3Ti4O12, (CCTO) at a parts per thousand yen680A degrees C. The bright-field TEM micrographs revealed that the size of the as synthesized crystallites to be in the 30-80 nm range. The powders so obtained had excellent sinterability resulting in high density ceramics which exhibited giant dielectric constants upto 40000 (1 kHz) at 25A degrees C, accompanied by low dielectric losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO2) synthesized by mixing directly KMnO4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO2 obtained is locally arranged in a δ-MnO2-type layered structure composed of edge-shared network of MnO6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO2 contains nearly spherical shaped morphology with δ-MnO2 structure, and 1D nanorods of α-MnO2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption−desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m2 g−1), porosity of nanoMnO2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of modeling material behavior which accounts for the dynamic metallurgical processes occurring during hot deformation is presented. The approach in this method is to consider the workpiece as a dissipator of power in the total processing system and to evaluate the dissipated power co-contentJ = ∫o σ ε ⋅dσ from the constitutive equation relating the strain rate (ε) to the flow stress (σ). The optimum processing conditions of temperature and strain rate are those corresponding to the maximum or peak inJ. It is shown thatJ is related to the strain-rate sensitivity (m) of the material and reaches a maximum value(J max) whenm = 1. The efficiency of the power dissipation(J/J max) through metallurgical processes is shown to be an index of the dynamic behavior of the material and is useful in obtaining a unique combination of temperature and strain rate for processing and also in delineating the regions of internal fracture. In this method of modeling, noa priori knowledge or evaluation of the atomistic mechanisms is required, and the method is effective even when more than one dissipation process occurs, which is particularly advantageous in the hot processing of commercial alloys having complex microstructures. This method has been applied to modeling of the behavior of Ti-6242 during hot forging. The behavior of α+ β andβ preform microstructures has been exam-ined, and the results show that the optimum condition for hot forging of these preforms is obtained at 927 °C (1200 K) and a strain rate of 1CT•3 s•1. Variations in the efficiency of dissipation with temperature and strain rate are correlated with the dynamic microstructural changes occurring in the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systemati model studies. A steel tank of size 900 x 900 x 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the normalized correlations between the incubation period tc and the properties of various materials tested in a rotating disk device indicates that, at very high intensities, the strength properties influence the duration of tc. The analysis of extensive data from other laboratories for cavitation and liquid impingement erosion also indicates that, while both energy and strength properties influence the duration of tc, the latter ones predominate for a majority of cases. A fatigue-type failure occurs during tc. For estimating the time required to pierce a metallic specimen in a rotating device a relationship tp = 160 tc0.44 is proposed. A detailed study of normalized correlations between erosion resistance (inverse of erosion rate) and tc values of different materials tested in the rotating disk shows that correlations are good. Analysis of data from eight other investigators clearly points out the validity and the usefulness of this type of prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xRuxO2-delta (x = 0.05 and 0.10) of 8-10 nm sizes have been synthesized by hydrothermal method using melamine as complexing agent. Compounds have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX) and their structures have been refined by the Rietveld method.The compounds crystallize in fluorite structure and the composition is Ce1-xRuxO2-x/2 where Ru is in +4 state and Ce is in mixed-valence (+3, +4) state. Substitution of Ru4+ ion in CeO2 activated the lattice oxygen. Ce1-xRuxO2-x/2 reversibly releases 0.22[O] and 0.42[O] for x = 0.05 and 0.10, respectively, which is higher than the maximumpossible OSC of 0.22 [O] observed for Ce0.50Zr0.50O2. Utilization of Higher OSC of Ce1-xRuxO2-delta (x = 0.05 and 0.10) is also reflected in terms of low-temperature CO oxidation with these catalysts, both in the presence and absence of feed oxygen. The Ru4+ ion acts as an active center for reducing molecules (CO, hydrocarbon ``HC'') and oxide ion vacancy acts as an active center for O-2 and NO, leading to low-temperature NO conversion to N-2. Thus due to Ru4+ ion, Ce1-xRuxO2-delta is not just a high oxygen storage material but also shows high activity toward CO, hydrocarbon ``HC'' oxidation, and NO reduction by CO at low temperature with high N-2 selectivity for three-way catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some tribological properties of a mica-dispersed Al-4%Cu-1.5%Mg alloy cast by a conventional foundry technique are reported. The effect of mica dispersion on the wear rate and journal bearing performance of the matrix alloy was studied under different pressures and under different interface friction conditions. The dispersion of mica was found (a) to increase the wear rate of the base alloy, (b) to decrease the temperature rise during wear and (c) to improve the ability of the alloy to resist seizure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently established moderate size free piston driven hypersonic shock tunnel HST3 along with its calibration is described here. The extreme thermodynamic conditions prevalent behind the reflected shock wave have been utilized to study the catalytic and non-catalytic reactions of shock heated test gases like Ar, N2 or O2 with different material like C60 carbon, zirconia and ceria substituted zirconia. The exposed test samples are investigated using different experimental methods. These studies show the formation of carbon nitride due to the non-catalytic interaction of shock heated nitrogen gas with C60 carbon film. On the other hand, the ZrO2 undergoes only phase transformation from cubic to monoclinic structure and Ce0.5Zr0.5O2 in fluorite cubic phase changes to pyrochlore (Ce2Zr2O7±δ) phase by releasing oxygen from the lattice due to heterogeneous catalytic surface reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles of trivalent Eu3+-doped Nd2O3 phosphors have been prepared using a low-temperature solution combustion method with metal nitrate as precursor and oxalyldihydrazide as a fuel at a fairly low temperature (<500 degrees C) and in a very short time (<5 min). A powder X-ray diffraction pattern reveals that cubic Nd2O3 : Eu3+ crystallites are directly obtained without the requirement of further calcinations. The crystallite size, evaluated from Scherer's formula, was found to be in the range of 20-30 nm. The microstructure and morphology were studied by scanning electron microscopy, which showed the phosphor to be foamy and fluffy in nature. Thermoluminescence characteristics of the Nd2O3 : Eu3+ have been studied using gamma irradiation. These demonstrate that the phosphor is suitable for use as a dosimeter.