144 resultados para Regular Linear System

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural modes of a non-linear system with two degrees of freedom are investigated. The system, which may contain either hard or soft springs, is shown to possess three modes of vibration one of which does not have any counterpart in the linear theory. The stability analysis indicates the existence of seven different modal stability patterns depending on the values of two parameters of non-linearity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present article we take up the study of nonlinear localization induced base isolation of a 3 degree of freedom system having cubic nonlinearities under sinusoidal base excitation. The damping forces in the system are described by functions of fractional derivative of the instantaneous displacements, typically linear and quadratic damping are considered here separately. Under the assumption of smallness of certain system parameters and nonlinear terms an approximate estimate of the response at each degree of freedom of the system is obtained by the Method of Multiple Scales approach. We then consider a similar system where the nonlinear terms and certain other parameters are no longer small. Direct numerical simulation is made use of to obtain the amplitude plot in the frequency domain for this case, which helps us to establish the efficacy of this method of base isolation for a broad class of systems. Base isolation obtained this way has no counterpart in the linear theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a Linear system with Markovian switching which is perturbed by Gaussian type noise, If the linear system is mean square stable then we show that under certain conditions the perturbed system is also stable, We also shaw that under certain conditions the linear system with Markovian switching can be stabilized by such noisy perturbation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An iterative algorithm baaed on probabilistic estimation is described for obtaining the minimum-norm solution of a very large, consistent, linear system of equations AX = g where A is an (m times n) matrix with non-negative elements, x and g are respectively (n times 1) and (m times 1) vectors with positive components.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the transient response of a third-order non-linear system is obtained by first reducing the given third-order equation to three first-order equations by applying the method of variation of parameters. On the assumption that the variations of amplitude and phase are small, the functions are expanded in ultraspherical polynomials. The expansion is restricted to the constant term. The resulting equations are solved to obtain the response of the given third-order system. A numerical example is considered to illustrate the method. The results show that the agreement between the approximate and digital solution is good thus vindicating the approximation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new procedure for reducing trajectory sensitivity for the optimal linear regulator is described. The design is achieved without increase in the order of optimization and without the feedback of trajectory sensitivity. The procedure is also used in the input signal design problem for linear system identification by interpreting it as increasing trajectory sensitivity with respect to parameters to be estimated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The response of a third order non-linear system subjected to a pulse excitation is analysed. A transformation of the displacement variable is effected. The transformation function chosen is the solution of the linear problem subjected to the same pulse. With this transformation the equation of motion is brought into a form in which the method of variation of parameters is applicable for the solution of the problem. The method is applied to a single axis gyrostabilized platform subjected to an exponentially decaying pulse. The analytical results are compared with digital and analog computer solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper deals with the existence of a quadratic Lyapunov function V = x′P(t)x for an exponentially stable linear system with varying coefficients described by the vector differential equation S0305004100044777_inline1 The derivative dV/dt is allowed to be strictly semi-(F) and the locus dV/dt = 0 does not contain any arc of the system trajectory. It is then shown that the coefficient matrix A(t) of the exponentially stable sy

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is presented to find nonstationary random seismic excitations with a constraint on mean square value such that the response variance of a given linear system is maximized. It is also possible to incorporate the dominant input frequency into the analysis. The excitation is taken to be the product of a deterministic enveloping function and a zero mean Gaussian stationary random process. The power spectral density function of this process is determined such that the response variance is maximized. Numerical results are presented for a single-degree system and an earth embankment modeled as shear beam.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results are presented of applying multi-time scale analysis using the singular perturbation technique for long time simulation of power system problems. A linear system represented in state-space form can be decoupled into slow and fast subsystems. These subsystems can be simulated with different time steps and then recombined to obtain the system response. Simulation results with a two-time scale analysis of a power system show a large saving in computational costs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let X be a normal projective threefold over a field of characteristic zero and vertical bar L vertical bar be a base-point free, ample linear system on X. Under suitable hypotheses on (X, vertical bar L vertical bar), we prove that for a very general member Y is an element of vertical bar L vertical bar, the restriction map on divisor class groups Cl(X) -> Cl(Y) is an isomorphism. In particular, we are able to recover the classical Noether-Lefschetz theorem, that a very general hypersurface X subset of P-C(3) of degree >= 4 has Pic(X) congruent to Z.