12 resultados para Rear seat

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis that the solar dynamo operates in a thin layer at the bottom of the convection zone is addressed. Recent work on the question whether the magnetic flux can be made to emerge at sunspot latitudes is reviewed. It is concluded that this hypothesis can fit the observational facts only if there is turbulence with a length scale of a few hundred kilometers in and around the dynamo region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis that the solar dynamo operates in a thin layer at the bottom of the convection zone is addressed. Recent work on the question whether the magnetic flux can be made to emerge at sunspot latitudes is reviewed. It is concluded that this hypothesis can fit the observational facts only if there is turbulence with a length scale of a few hundred kilometers in and around the dynamo region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single-step solid-phase RIA (SS-SPRIA) developed in our laboratory using hybridoma culture supernatants has been utilised for the quantitation of epitope-paratope interactions. Using SS-SPRIA as a quantitative tool for the assessment of epitope stability, it was found that several assembled epitopes of human chorionic gonadotropin (hCG) are differentially stable to proteolysis and chemical modification. Based on these observations an approach has been developed for identifying the amino acid residues constituting an epitopic region. This approach has now been used to map an assembled epitope at/near the receptor binding region of the hormone. The mapped site forms a part of the seat belt region and the cystine knot region (C34-C38-C88-C90-H106). The carboxy terminal region of the alpha-subunit forms a part of the epitope indicating its proximity to the receptor binding region. These results are in agreement with the reported receptor binding region identified through other approaches and the X-ray crystal structure of hCG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The iodide-containing layered double hydroxides (LDHs) of Mg and Zn with AI crystallize by the inclusion of extensive positional disorder of I- ions in the interlayer region. I- ion given its poor charge to size ratio can neither screen effectively the positive charge nor participate in H-bonding with the metal hydroxide layers. Thereby the I- ions are not stabilized in sites close to the seat of positive charge of the metal hydroxide layers (6c), nor in sites that facilitate H-bonding (3b or 18h). On the other hand, OH- from water can do both and effectively displaces I- from the interlayer. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binaural experiments are described which indicate that the ability of the brain to localize a desired sound and to suppress undesired sounds coming from other directions can be traced in part to the different times of arrival of a sound at the two ears. It is suggested that the brain inserts a time delay in one of the two nerve paths associated with the ears so as to be able to compare, and thus concentrate on, those sounds arriving at the ears with this particular time of arrival distance.The ability to perceive weak sounds binaurally in the presence of noise is shown to be a simple function of the direction of the desired sound and noise. An explanation is given for the effect reported by Koenig that front and rear confusion is avoided by head movements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polistes dominulus is one of the most common social wasps in Europe and is an invasive species in the United States. Its wide prevalence has made it one of the best-studied social wasps. In most social wasps, the female wasps live in a colony and organize themselves into a behavioral dominance hierarchy such that only the dominant alpha individual (the queen) reproduces while the rest function as apparently altruistic, sterile subordinates (workers), building the nest, foraging for food and pulp, and feeding and caring for the brood. Why should workers invest their time and energy helping to rear the queen's brood, rather than found their own nests and rear their own brood—something they are quite capable of? On page 874 of this issue, Leadbeater et al. (1) show that the subordinates indeed produce their own offspring and this raises interesting questions about the links between altruism, direct reproduction, and the evolution of social behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminar separation bubbles are thought to be highly non-parallel, and hence global stability studies start from this premise. However, experimentalists have always realized that the flow is more parallel than is commonly believed, for pressure-gradient-induced bubbles, and this is why linear parallel stability theory has been successful in describing their early stages of transition. The present experimental/numerical study re-examines this important issue and finds that the base flow in such a separation bubble becomes nearly parallel due to a strong-interaction process between the separated boundary layer and the outer potential flow. The so-called dead-air region or the region of constant pressure is a simple consequence of this strong interaction. We use triple-deck theory to qualitatively explain these features. Next, the implications of global analysis for the linear stability of separation bubbles are considered. In particular we show that in the initial portion of the bubble, where the flow is nearly parallel, local stability analysis is sufficient to capture the essential physics. It appears that the real utility of the global analysis is perhaps in the rear portion of the bubble, where the flow is highly non-parallel, and where the secondary/nonlinear instability stages are likely to dominate the dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated megaampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (10(18)-10(19)) W/cm(2) was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wobble instability is one of the major problems of a three-wheeled vehicle commonly used in India, and these instabilities are of great interest to industry and academia. In this paper, we studied this instability using a multi-body dynamic model and with experiments conducted on a prototype three-wheeled vehicle on a test track. The multi-body dynamic model of a three-wheeled vehicle is developed using the commercial software ADAMS/Car. In an initial model, all components including main structures such as the frame, the steering column and the rear forks are assumed to be rigid bodies. A linear eigenvalue analysis, which is carried out at different speeds, reveals a mode that has predominantly a steering oscillation, also called a wobble mode, with a frequency of around 5-6Hz. The analysis results shows that the damping of this mode is low but positive up to the maximum speed of the three-wheeled vehicle. However, the experimental study shows that the mode is unstable at speeds below 8.33m/s. To predict and study this instability in detail, a more refined model of the three-wheeled vehicle, with flexibilities of three important bodies, was constructed in ADAMS/Car. With flexible bodies, three modes of a steering oscillation were observed. Two of these are well damped and the other is lightly damped with negative damping at lower speeds. Simulation results with flexibility incorporated show a good match with the instability observed in the experimental studies. Further, we investigated the effect of each flexible body and found that the flexibility of the steering column is the major contributor for wobble instability and is similar to the wheel shimmy problem in aircraft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of detonations and their interactions is vital for the understanding of the high-speed flow physics involved and the ultimate goal of controlling their detrimental effects. However, producing safe and repeatable detonations within the laboratory can be quite challenging, leading to the use of computational studies which ultimately require experimental data for their validation. The objective of this study is to examine the induced flow field from the interaction of a shock front and accompanying products of combustion, produced from the detonation taking place within a non-electrical tube lined with explosive material, with porous plates with varying porosities, 0.7-9.7%. State of the art high-speed schlieren photography alongside high-resolution pressure measurements is used to visualise the induced flow field and examine the attenuation effects which occur at different porosities. The detonation tube is placed at different distances from the plates' surface, 0-30 mm, and the pressure at the rear of the plate is recorded and compared. The results indicate that depending on the level of porosity and the Mach number of the precursor shock front secondary reflected and transmitted shock waves are formed through the coalescence of compression waves. With reduced porosity, the plates act almost as a solid surface, therefore the shock propagates faster along its surface.