354 resultados para Reactor RA-6
em Indian Institute of Science - Bangalore - Índia
Resumo:
Hydrolytic polymerization of caprolactam to Nylon 6 in a semibatch reactor is carried out by heating a mixture of water and caprolactam. Evaporation of volatiles caused by heating results in a pressure build-up. After the pressure reaches a predetermined value, vapors are vented to keep the pressure constant for some time, and thereafter, to lower the pressure to a value slightly above atmospheric in a preprogrammed manner. The characteristics of the polymer are determined by the chemical reactions and the vaporization of water and caprolactam. The semibatch operation has been simulated and the predictions have been compared with industria data. The observed temperature and pressure histories were predicted with a fair degree of accuracy. It was found that the predictions of the degree of polymerization however are sensitive to the vapor-liquid equilibrium relations. A comparison with an earlier model, which neglected mass transfer resistance, indicates that simulation using the VLE data of Giori and Hayes and accounting for mass transfer resistance is more reliable.
Resumo:
An approach is presented for hierarchical control of an ammonia reactor, which is a key unit process in a nitrogen fertilizer complex. The aim of the control system is to ensure safe operation of the reactor around the optimal operating point in the face of process variable disturbances and parameter variations. The four different layers perform the functions of regulation, optimization, adaptation, and self-organization. The simulation for this proposed application is conducted on an AD511 hybrid computer in which the AD5 analog processor is used to represent the process and the PDP-11/ 35 digital computer is used for the implementation of control laws. Simulation results relating to the different layers have been presented.
Resumo:
A rate equation is developed for the liquid phase hydrogenation of aniline over cylindrical catalyst pellets of 30% nickel deposited on clay in a trickle bed reactor. The equation takes into account external and internal diffusional limitations, and describes the experimental data adequately. The hydrogenation reaction is first order with respect to hydrogen and zero order with respect to aniline. Effectiveness factors are in the range 0.003-0.03. Apparent activation energy of the reaction is 12.7 kcal/mol and true activation energy is 39.6 kcal/mol.
Resumo:
The kinetics of oxidation of acetaldehyde to acetic acid was studied in a sparger reactor using manganese acetate as the catalyst. Data obtained in a stirred tank reactor are used for analyzing the sparger reactor data. The rate of chemical reaction is extremely fast and can be neglected for the rate equation of the sparger reactor. A kinetic model applicable at any temperature and concentration within the range of the variables studied is developed which predicts the performance of the sparger reactor satisfactorily.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas—vapour cavity using the Rayleigh—Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar---O2 mixtures of different compositions are employed.
Resumo:
Ultrasonication of aqueous KI solution is known to yield I2 due to reaction of iodide ions with hydroxyl radicals, which in turn are generated due to cavitation. Based on this conceptual framework, a model has been developed to predict the rate of iodine formation for KI solutions of various concentrations under different gas atmospheres. The model follows the growth and collapse of a gas-vapour cavity using the Rayleigh-Plesset bubble dynamics equation. The bubble is assumed to behave isothermally during its growth phase and a part of the collapse phase. Thereafter it is assumed to collapse adiabatically, yielding high temperatures and pressures. Thermodynamic equilibrium is assumed in the bubble at the end of collapse phase. The contents of the bubble are assumed to mix with the liquid, and the reactor contents are assumed to be well stirred. The model has been verified by conducting experiments with KI solutions of different concentrations and using different gas atmospheres. The model not only explains these results but also the existence of a maximum when Ar-O2 mixtures of different compositions are employed.
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.
Resumo:
Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.
Resumo:
Reaction of 6-acetoxy-5-bromomethylquinoline (1c) and 2-bromomethyl-4-(2'-pyridyl)phenyl acetate (2b) with tetrachlorocatechol in acetone in the presence of anhydrous potassium carbonate resulted in the formation of diastereomeric products 3c, 3d, 4e and 4f.
Resumo:
The title compound, C10H7Cl2NO, features a planar molecule, excluding the methyl H atoms [maximum deviation = 0.0385 (1) angstrom]. The crystal packing is stabilized by pi-pi stacking interactions across inversion centres [centroid-to-centroid distance = 3.736 (3) angstrom].
Resumo:
In the title moleclue, C19H21NO, the 4-piperidone ring adopts a chair conformation in which the two benzene rings and the methyl group attached to C atoms all have equatorial orientations. In the crystal structure, centrosymmetric dimers are formed through weak intermolecular C-H center dot center dot center dot O hydrogen bonds [the dihedral angle between the aromatic rings is 58.51 (5)degrees].
Resumo:
Photodimerization of 7-fluoro-4-methylcoumarin 1 is topochemical while 6-fluoro-4-methylcoumarin 2 does not lead to the expected product based on the topochemical principles. Compound 1 yield an anti-MT photodimer with a lower dimer conversion while compound 2 results in a syn-HH photodimer. The packing features of 1, 2 and 2a (the photodimer of 2) have been unequivocally established by single crystal X-ray diffraction studies. The rationale for the significant lower dimer conversion in 1 is provided. The defect induced dimerization reaction in 2 as a function of temperature is analyzed which verifies that the reaction proceeds with an induction period. The details of the interactions involving fluorine are analyzed.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5
Resumo:
Intravenous immunoglobulin (IVIg) is widely used to treat autoimmune diseases. Several mutually nonexclusive mechanisms are proposed to explain the beneficial effects of IVIg in patients (1, 2). Lately, Ravetch and colleagues (3) demonstrate that anti-inflammatory activity of IVIg is mediated mainly by antibodies that contain terminal _2,6-sialic acid linkages at the Asn297-linked glycan of Fc region.