43 resultados para Rational objective
em Indian Institute of Science - Bangalore - Índia
Resumo:
There have been major advances in the past couple of years in the rational synthesis of inorganic solids: synthesis of mercury-based superconducting cuprates showing transition temperatures up to 150 K; ZrP2-xVxO7 solid solutions showing zero or negative thermal expansion; copper oxides possessing ladder structures such as La1-xSrxCuO2.5; synthesis of mesoporous oxide materials having adjustable pore size in the range 15-100 Angstrom; and synthesis of a molecular ferromagnet showing a critical temperature of 18.6 K. Despite great advances in probing the structures of solids and measurement of their physical properties, the design and synthesis of inorganic solids possessing desired structures and properties remain a challenge today. With the availability of a variety of mild chemistry-based approaches, kinetic control of synthetic pathways is becoming increasingly possible, which, it is hoped, will eventually make rational design of inorganic solids a reality.
Resumo:
The literature contains many examples of digital procedures for the analytical treatment of electroencephalograms, but there is as yet no standard by which those techniques may be judged or compared. This paper proposes one method of generating an EEG, based on a computer program for Zetterberg's simulation. It is assumed that the statistical properties of an EEG may be represented by stationary processes having rational transfer functions and achieved by a system of software fillers and random number generators.The model represents neither the neurological mechanism response for generating the EEG, nor any particular type of EEG record; transient phenomena such as spikes, sharp waves and alpha bursts also are excluded. The basis of the program is a valid ‘partial’ statistical description of the EEG; that description is then used to produce a digital representation of a signal which if plotted sequentially, might or might not by chance resemble an EEG, that is unimportant. What is important is that the statistical properties of the series remain those of a real EEG; it is in this sense that the output is a simulation of the EEG. There is considerable flexibility in the form of the output, i.e. its alpha, beta and delta content, which may be selected by the user, the same selected parameters always producing the same statistical output. The filtered outputs from the random number sequences may be scaled to provide realistic power distributions in the accepted EEG frequency bands and then summed to create a digital output signal, the ‘stationary EEG’. It is suggested that the simulator might act as a test input to digital analytical techniques for the EEG, a simulator which would enable at least a substantial part of those techniques to be compared and assessed in an objective manner. The equations necessary to implement the model are given. The program has been run on a DEC1090 computer but is suitable for any microcomputer having more than 32 kBytes of memory; the execution time required to generate a 25 s simulated EEG is in the region of 15 s.
Resumo:
We present a new, generic method/model for multi-objective design optimization of laminated composite components using a novel multi-objective optimization algorithm developed on the basis of the Quantum behaved Particle Swarm Optimization (QPSO) paradigm. QPSO is a co-variant of the popular Particle Swarm Optimization (PSO) and has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; Failure Mechanism based Failure criteria, Maximum stress failure criteria and the Tsai-Wu Failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences as well as fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Also, the performance of QPSO is compared with the conventional PSO.
Resumo:
A branch and bound type algorithm is presented in this paper to the problem of finding a transportation schedule which minimises the total transportation cost, where the transportation cost over each route is assumed to be a piecewice linear continuous convex function with increasing slopes. The algorithm is an extension of the work done by Balachandran and Perry, in which the transportation cost over each route is assumed to beapiecewise linear discontinuous function with decreasing slopes. A numerical example is solved illustrating the algorithm.
Resumo:
The velocity ratio algorithm developed from a heuristic study of transfer matrix multiplication has been employed to bring out the relative effects of the elements constituting a linear, one-dimensional acoustic filter, the overall dimensions of which are fixed, and synthesize a suitable straight-through configuration for a low-pass, wide-band, non-dissipative acoustic filter. The potential of the foregoing approach in applications to the rational design of practical acoustic filters such as automotive mufflers is indicated.
Resumo:
The paper deals with a rational approach to the development of general design criteria for non-dissipative vibration isolation systems. The study covers straight-through springmass systems as well as branched ones with dynamic absorbers. Various design options, such as the addition of another spring-mass pair, replacement of an existing system by one with more spring-mass pairs for the same space and material requirements, provision of one or more dynamic absorbers for the desired frequency range, etc., are investigated quantitatively by means of an algebraic algorithm which enables one to write down straightaway the velocity ratio and hence transmissibility of a linear dynamical system in terms of the constituent parameters.
Resumo:
We explore an isoparametric interpolation of total quaternion for geometrically consistent, strain-objective and path-independent finite element solutions of the geometrically exact beam. This interpolation is a variant of the broader class known as slerp. The equivalence between the proposed interpolation and that of relative rotation is shown without any recourse to local bijection between quaternions and rotations. We show that, for a two-noded beam element, the use of relative rotation is not mandatory for attaining consistency cum objectivity and an appropriate interpolation of total rotation variables is sufficient. The interpolation of total quaternion, which is computationally more efficient than the one based on local rotations, converts nodal rotation vectors to quaternions and interpolates them in a manner consistent with the character of the rotation manifold. This interpolation, unlike the additive interpolation of total rotation, corresponds to a geodesic on the rotation manifold. For beam elements with more than two nodes, however, a consistent extension of the proposed quaternion interpolation is difficult. Alternatively, a quaternion-based procedure involving interpolation of relative rotations is proposed for such higher order elements. We also briefly discuss a strategy for the removal of possible singularity in the interpolation of quaternions, proposed in [I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133]. The strain-objectivity and path-independence of solutions are justified theoretically and then demonstrated through numerical experiments. This study, being focused only on the interpolation of rotations, uses a standard finite element discretization, as adopted by Simo and Vu-Quoc [J.C. Simo, L. Vu-Quoc, A three-dimensional finite rod model part II: computational aspects, Comput. Methods Appl. Mech. Engrg. 58 (1986) 79–116]. The rotation update is achieved via quaternion multiplication followed by the extraction of the rotation vector. Nodal rotations are stored in terms of rotation vectors and no secondary storages are required.
Resumo:
Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.
Resumo:
A rotating beam finite element in which the interpolating shape functions are obtained by satisfying the governing static homogenous differential equation of Euler–Bernoulli rotating beams is developed in this work. The shape functions turn out to be rational functions which also depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. These rational functions yield the Hermite cubic when rotation speed becomes zero. The new element is applied for static and dynamic analysis of rotating beams. In the static case, a cantilever beam having a tip load is considered, with a radially varying axial force. It is found that this new element gives a very good approximation of the tip deflection to the analytical series solution value, as compared to the classical finite element given by the Hermite cubic shape functions. In the dynamic analysis, the new element is applied for uniform, and tapered rotating beams with cantilever and hinged boundary conditions to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.
Resumo:
We present a generic method/model for multi-objective design optimization of laminated composite components, based on vector evaluated particle swarm optimization (VEPSO) algorithm. VEPSO is a novel, co-evolutionary multi-objective variant of the popular particle swarm optimization algorithm (PSO). In the current work a modified version of VEPSO algorithm for discrete variables has been developed and implemented successfully for the, multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; failure mechanism based failure criteria, Maximum stress failure criteria and the Tsai-Wu failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Many optimal control problems are characterized by their multiple performance measures that are often noncommensurable and competing with each other. The presence of multiple objectives in a problem usually give rise to a set of optimal solutions, largely known as Pareto-optimal solutions. Evolutionary algorithms have been recognized to be well suited for multi-objective optimization because of their capability to evolve a set of nondominated solutions distributed along the Pareto front. This has led to the development of many evolutionary multi-objective optimization algorithms among which Nondominated Sorting Genetic Algorithm (NSGA and its enhanced version NSGA-II) has been found effective in solving a wide variety of problems. Recently, we reported a genetic algorithm based technique for solving dynamic single-objective optimization problems, with single as well as multiple control variables, that appear in fed-batch bioreactor applications. The purpose of this study is to extend this methodology for solution of multi-objective optimal control problems under the framework of NSGA-II. The applicability of the technique is illustrated by solving two optimal control problems, taken from literature, which have usually been solved by several methods as single-objective dynamic optimization problems. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In many applications of wireless ad hoc networks, wireless nodes are owned by rational and intelligent users. In this paper, we call nodes selfish if they are owned by independent users and their only objective is to maximize their individual goals. In such situations, it may not be possible to use the existing protocols for wireless ad hoc networks as these protocols assume that nodes follow the prescribed protocol without deviation. Stimulating cooperation among these nodes is an interesting and challenging problem. Providing incentives and pricing the transactions are well known approaches to stimulate cooperation. In this paper, we present a game theoretic framework for truthful broadcast protocol and strategy proof pricing mechanism called Immediate Predecessor Node Pricing Mechanism (IPNPM). The phrase strategy proof here means that truth revelation of cost is a weakly dominant-strategy (in game theoretic terms) for each node. In order to steer our mechanism-design approach towards practical implementation, we compute the payments to nodes using a distributed algorithm. We also propose a new protocol for broadcast in wireless ad hoc network with selfish nodes based on IPNPM. The features of the proposed broadcast protocol are reliability and a significantly reduced number of packet forwards compared to the number of network nodes, which in turn leads to less system-wide power consumption to broadcast a single packet. Our simulation results show the efficacy of the proposed broadcast protocol.
Resumo:
In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the study of complex and unexpected dependencies of nanocrystal size as well as nanocrystalsize distribution on various reaction parameters in the synthesis of ZnO nanocrystals using poly(vinyl pyrollidone) (PVP) as a capping agent. This method establishes a qualitatively different growth mechanism to the anticipated Ostwald ripening behavior. The study of size-distribution kinetics and an understanding of the observed non-monotonic behaviors provides a route to rational synthesis. We used a simple, but accurate, approach to estimate the size-distribution function of nanocrystals from the UV-absorption spectrum. Our results demonstrate the accuracy and generality of this approach, and we also illustrate its application to various semiconducting nanocrystals, such as ZnO, ZnS, and CdSe, over a wide size range (1.8-5.3 nm).