71 resultados para Rare earth ions
em Indian Institute of Science - Bangalore - Índia
Resumo:
Sintering, electrical conductivity and thermal expansion behaviour of combustion synthesised strontium substituted rare earth manganites with the general formula Ln(1-x)Sr(x)MnO(3) (Ln = Pr, Nd and Sm; x = 0, 0.16 and 0.25) have been investigated as solid oxide fuel cell cathode materials. The combustion derived rare earth manganites have surface area in the range of 13-40 m(2)/g. Strontium substitution increases the electrical conductivity values in all the rare earth manganites. With the decreasing ionic radii of rare earth ions, the conductivity value decreases. Among the rare earth manganites studied, (Pr/Nd)(0.75)Sr0.25MnO3 show high electrical conductivity ( > 100 S/cm). The thermal expansion coefficients of Pr0.75Sr0.25MnO3 and Nd0.75Sr0.25MnO3 were found to be 10.2 x 10(-6) and 10.7 x 10(-6) K-1 respectively, which is very close to that of the electrolyte (YSZ) used in solid oxide fuel cells. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Chemically modified microporous materials can be prepared as robust catalysts suitable for application in vapor phase processes such as Friedel-Crafts alkylation. In the present paper we have investigated the use of rare earth metal (Ce3+, La3+, RE3+, and Sm3+) exchanged Na-Y zeolites as catalysts for the alkylation of benzene with long chain linear 1-olefin; 1-dodecene. Thermodesorption studies of 2,6-dimethylpyridine adsorbed catalysts (in the temperature range 573 to 873 K) show that the rare earth zeolites are highly Bronsted acidic in nature. A perfect correlation between catalyst selectivity towards the desired product (2-phenyldodecane) and Bronsted acid sites amount has been observed. (c) 2006 Springer Science + Business Media, Inc.
Resumo:
Oxygen reactivity and catalytic activity of the cobalt-containing layered defect perovskites, YBa2Cu2CoO7+delta and LaBa2Cu2CoO7+delta, in comparison with LaBa2Cu3O7-delta have been investigated employing temperature-programmed desorption (TPD) and temperature-programmed surface reactions (TPSR) in the stoichiometric and catalytic mode using carbon monoxide as a probe molecule. TPD studies showed evidence for the presence of two distinct labile oxygen species, one at (0 0 1/2) sites and the other at (0 1/2 0) sites in LaBa2Cu2CoO7+delta against a single labile species at (0 1/2 0) in the case of two other oxides. The activation energies for the catalytic oxidation of carbon monoxide by oxygen over LaBa2Cu3O7-delta, YBa2Cu2CoO7+delta, and LaBa2Cu2CoO7+delta have been estimated to be 24.2, 15.9, and 13.6 kcal/mol, respectively. The reactivity and catalytic activity of the oxide systems have been interpreted in terms of the structural changes brought about by substituents, guided by a directing effect of the larger rare earth cation. TPSR profiles, structural analysis, and infrared spectroscopic investigations suggest that the oxygen present at (0 0 1/2) sites in the case of LaBa2Cu2CoO7+delta is accessible to catalytic oxidation of CO through a Mars-Van Krevelen pathway. Catalytic conversion of CO to CO2 over LaBa2Cu2CoO7+delta occurs at 200 degrees C. The enhanced reactivity is explained in terms of changes brought about in the coordination polyhedra around transition metals, enhanced basal plane oxygen diffusivity, and redox potentials of the different transition metal cations.
Resumo:
High temperature reaction calorimetry using molten lead berate as solvent has been used to study the thermochemistry of NdMnO3, YMnO3, La1-xSrxMnO3 (with 0 < x < 0.5), and Ln(0.5)Ca(0.5)MnO(3) (with Ln = La, Nd, Y), The enthalpies of formation of these multicomponent oxides from their binary constituents have been calculated from the measured enthalpy of drop solution, The energetic stability of the perovskite depends on the size of the A cation, The enthalpy of formation of YMnO3 (smallest A cation) is more endothermic than those of NdMnO3 and LaMnO3. The energetics of the perovskite also depends on the oxidation state of the B site's ions. In the La1-xSrxMnO3 system, the energetic stability of the structure increases with the Mn4+/Mn3+ ratio, The new values of the enthalpies of oxidations, with reliable standard entropies, were used to plot the phase stability diagram of the lanthanum-manganese-oxygen system in the temperature range 300-1100 K, The LaMnO3/MnO phase boundary evaluated in this study agrees with the one published by Atsumi et nl. calculated from thermogravimetric and conductivity measurements.
Resumo:
Ternary rare earth transition metal sulfides LnMS3 with Ln = La, Nd, and Gd, and M = V and Cr; as well as Ln = La and M = Mn, Fe, Co, and Ni have been prepared and characterized. The vanadium and chromium sulfides crystallize in a monoclinic layer structure isotypic with LaCrS3, while the other LnMS3 sulfides crystallize in a hexagonal structure. Chemical shifts of the metal K-absorption edge and XPS binding energies of core levels indicate that the transition metal is trivalent in the V and Cr sulfides, while it is divalent in the Mn, Fe, Co, and Ni sulfides. Electrical and magnetic properties of the sulfides are discussed in terms of their structures and the electronic configurations of the transition metal ions.
Resumo:
2,6-Lutidine-N-oxide (LNO) complexes of rare-earth bromides of the composition $$MBr_3 .(LNO)_{4_{ - n} } .nH_2 O$$ wheren = l for M = La, Pr, Nd, Sm, Gd, Ho, Er; andn = 0 for M = Y have been prepared and characterised by analyses, conductance and infrared data. Infrared spectra of the complexes indicate that the coordination of ligand to the metal ion takes place through the oxygen of the ligand, and the water molecule in the complexes present is coordinated to the metal. A coordination number of seven has been suggested to all the rare-earth metal ions.
Resumo:
3-Picoline-N-oxide (3-PicNO) complexes of rare-earth bromides of the formulaMBr3(3-PicNO)8–n·nH2O wheren=0 forM=La, Pr, Nd, Sm Tb or Y andn=2 forM=Ho or Yb have been prepared. Infrared and proton NMR studies indicate that the coordination of the ligand is through oxygen. Conductance data in acetonitrile suggest that two bromide ions are coordinated to the metal ion. Proton NMR studies suggest a bicapped dodecahedral arrangement of the ligands around the metal ion in solution for Pr(III), Nd(III) and Tb(III) complexes.
Resumo:
FMR measurements have been carried out on several members of the Ln1âxSrxCoO3 (Ln = Rare earth) system. The results show that geff in these systems is around 1.25 independent of x as well as the rare earth ion. It is suggested that this unusual value of geff is due to the localized intermediate-spin Co3+ ions (t52ge1g) located at the top of the Ï* band.
Resumo:
In continuation of our work on the effect of the anion on the coordination chemistry of the rare-earth metal ions, we have now extended our studies to 4-picoline-N-oxide (4-Pie NO) complexes of rare-earth bromides. By ohangi~ the method of preparation Harrison and Watsom (1) have prepared two types of Sm(IIl) complexes and three types of Eu(III) complexes of 4-pioollne-N-Oxide in the presence of perchlorate ions. We have isolated two types of pyridine-N-Oxide complexes of rare-earth bromides, also by changing the method of preparation (2). The effect of the change of the preparative method on the composition of the lanthanide complexes is exhibited in the case of other complexes also (3-6). But our attempts to prepare 4-picoline-N-Oxide of rare-earth bromides having different stoichiometries were unsucessful . The composition of the complexes is the same for all the complexes prepared. The results of the physico-chemical studies on these 4-Pic NO complexes of rare-earth bromides are discussed in the present paper.
Resumo:
Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.
Resumo:
A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.
Resumo:
Rare-earth nickelates Ln(2)BaNi(1-x)Cu(2)O(5), Ln = Nd and Dy, and Dy2-xYxBaNiO5 have been synthesized in order to investigate the effect of substitution of Ni by Cu and Dy by nonmagnetic Y on the magnetic properties of the nickelates. In Ln(2)BaNi(1-x)Cu(x)O(5), the nickelate structure (x=0.0) changes to the cuprate structure (x=1.0) at a specific composition (x=0.3). The Neel temperature of Nd2BaNi1-xCuxO5 decreases continuously with increase in x upto x=0.3 (T-N = 18K); when x > 0.3, the materials are paramagnetic down to 20K. The mu(eff) in Nd2BaNi1-xCxO5 essentially corresponds to the contribution of the Nd ions. In Dy2-xYxBaNiO5, the Neel temperature decreases from 40K when x=0.0 to 24K when x=1.5. The compositions with 1.5 less than or equal to x less than or equal to 2 (including the x=1.95 composition) are paramagnetic down to 20K, unlike Y2BaNiO5 (x=2.0) which exhibits a T-N of 370K. Even the smallest concentration of paramagnetic Dy seems to destroy the antiferromagnetic Ni-O-Ni chains in Y2BaNiO5.
Resumo:
Arsenic pollution of water is a major problem faced worldwide. Arsenic is a suspected carcinogen in human beings and is harmful to other living beings. In the present study, a novel adsorbent was used to remove arsenate [As(V)] from synthetic solutions. The adsorbent, which is a mixture of rare earth oxides, was found to adsorb As(V) rapidly and effectively. The effect of various parameters such as contact time, initial concentration, pH, and adsorbent dose on adsorption efficiency was investigated. More than 90% of the adsorption occurred within the first 10 min and the kinetic rate constant was found to be about 3.5 mg min(-1). Adsorption efficiency was found to be dependent on the initial As(V) concentration, and the adsorption behavior followed the Langmuir adsorption model. The optimum pH was found to be 6.5. The presence of other ions such as nitrate, phosphate, sulphate, and silicate decreased the adsorption of As(V) by about 20-30%. The adsorbed As(V) could be desorbed easily by washing the adsorbent with pH 12 solution. This study demonstrates the applicability of naturally occurring rare earth oxides as selective adsorbents for As(V) from solutions.
Resumo:
New complexes of lanthanide perchlorates with di-t-butyl amides of di, tri and tetraglycolic acids have been synthesised. The complexes have the general formula Ln(DiGA)3(ClO4)3; Ln(TriGA)2 (ClO4)3 and Ln(TetGA)2 (C1O4)3, where Ln = La-Yb and Y and DiGA = N,N′, di-t-butyl diglycolamide, TriGA N,N′, di-t-butyl triglycolamide and TetGA = N,N′ di-t-butyl tetraglycolamide, respectively. The complexes have been characterized by analysis, electrolytic conductance, infrared,1H and13C nuclear magnetic resonance and electronic spectral data.Infrared spectra indicate the coordination of all the available ether oxygens and the amide carbonyls in each of the ligands, to the metal ions. IR and conductance data show that the perchlorate groups in all the complexes are ionic.1H and13C NMR data support the IR data regarding the mode of coordination of ligands to the metal ions. Electronic spectral shapes have been interpreted in terms of nine, eight and ten coordination in DiGA, TriGA and TetGA complexes respectively.
Resumo:
Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.