90 resultados para Rapid voluntary stepping
em Indian Institute of Science - Bangalore - Índia
Resumo:
Sinusoidal structured light projection (SSLP) technique, specifically-phase stepping method, is in widespread use to obtain accurate, dense 3-D data. But, if the object under investigation possesses surface discontinuities, phase unwrapping (an intermediate step in SSLP) stage mandatorily require several additional images, of the object with projected fringes (of different spatial frequencies), as input to generate a reliable 3D shape. On the other hand, Color-coded structured light projection (CSLP) technique is known to require a single image as in put, but generates sparse 3D data. Thus we propose the use of CSLP in conjunction with SSLP to obtain dense 3D data with minimum number of images as input. This approach is shown to be significantly faster and reliable than temporal phase unwrapping procedure that uses a complete exponential sequence. For example, if a measurement with the accuracy obtained by interrogating the object with 32 fringes in the projected pattern is carried out with both the methods, new strategy proposed requires only 5 frames as compared to 24 frames required by the later method.
Resumo:
Abstract: We report the growth and the electron cyclotron resonance measurements of n-type Si/Si0.62Ge0.38 and Si0.94Ge0.06/Si0.62Ge0.38 modulation-doped heterostructures grown by rapid thermal chemical vapor deposition. The strained Si and Si0.94Ge0.06 channels were grown on relaxed Si0.62Ge0.38 buffer layers, which consist of 0.6 mu m uniform Si0.62Ge0.38 layers and 0.5 mu m compositionally graded relaxed SiGe layers from 0 to 38% Ge. The buffer layers were annealed at 800 degrees C for 1 h to obtain complete relaxation. A 75 Angstrom Si(SiGe) channel with a 100 Angstrom spacer and a 300 Angstrom 2 X 10(19) cm(-3) n-type supply layer was grown on the top of the buffer layers. The cross-sectional transmission electron microscope reveals that the dense dislocation network is confined to the buffer layer, and relatively few dislocations terminate on the surface. The plan-view image indicates the threading dislocation density is about 4 X 10(6) cm(-2). The far-infrared measurements of electron cyclotron resonance were performed at 4 K with the magnetic field of 4-8 T. The effective masses determined from the slope of the center frequency of the absorption peak versus applied magnetic field plot are 0.203m(0) and 0.193m(0) for the two dimensional electron gases in the Si and Si0.94Ge0.06 channels, respectively. The Si effective mass is very close to that of a two dimensional electron gas in an Si MOSFET (0.198m(0)). The electron effective mass of Si0.94Ge0.06 is reported for the first time and is about 5% lower than that of pure Si.
Resumo:
High microwave susceptibility of NaH2PO4 . 2H(2)O has been discovered, This hydrated acid phosphate of sodium can be heated upto 1000 K or more when exposed to 2.45 GHz microwaves. Using this, a novel microwave-assisted preparation of a number of important crystalline and glassy materials with NASICON-type chemistry has been accomplished in less than 8 min which is only a fraction of the time required for conventional synthetic procedures, The present single-shot approach to the preparation of phosphates is attractive in terms of its simplicity, rapidity, and general applicability, A ''step-ladder'' heating mechanism has been proposed to account for the high microwave absorbing ability of NaH2PO4 . 2H(2)O.
Resumo:
A rapid, highly selective and simple method has been developed for the quantitative determination of pyro-, tri- and orthophosphates. The method is based on the formation of a solid complex of bis(ethylenediamine)cobalt(III) species with pyrophosphate at pH 4.2-4.3, with triphosphate at pH 2.0-2.1 and with orthophosphate at pH 8.2-8.6. The proposed method for pyro- and triphosphates differs from the available method, which is based on the formation of an adduct with tris(ethylenediamine)cobalt(III) species. The complexes have the composition [Co(en)(2)HP2O7]4H(2)O and [Co(en)(2)H2P3O10]2H(2)O, respectively. The precipitation is instantaneous and quantitative under the recommended optimum conditions giving 99.5% gravimetric yield in both cases. There is no interferences from orthophosphate, trimetaphosphate and pyrophosphate species in the triphosphate estimation up to 5% of each component. The efficacy of the method has been established by determining pyrophosphate and triphosphate contents in various matrices. In the case of orthophosphate, the proposed method differs from the available methods such as ammonium phosphomolybdate, vanadophosphomolybdate and quinoline phosphomolybdate, which are based on the formation of a precipitate, followed by either titrimetry or gravimetry. The precipitation is instantaneous and the method is simple. Under the recommended pH and other reaction conditions, gravimetric yields of 99.6-100% are obtainable. The method is applicable to orthophosphoric acid and a variety of phosphate salts.
Resumo:
Fine particle FeVO4, AIVO4, YVO4 and Yo.95Eu0.05VO4 have been prepared by the combustion of aqueous solutions containing corresponding metal nitrate, ammonium metavanadate, ammonium nitrate and 3-methyl-5-pyrazolone.The solutions containing the redox mixtures, when rapidly heated at 370 °C, ignite and undergo self-propagating,gas-producing, exothermic reactions to yield fine particle metal vanadates. Formation of crystalline vanadates was confirmed by powder X-ray diffraction patterns,27A1 nuclear magnetic resonance, IR and fluorescence spectra.
Resumo:
his paper describes an improved microtiter solid-phase enzyme immunoassay for the determination of total and allergen-specific human IgE. This assay technique is unique in its use of the avidin-biotin interaction to increase sensitivity. The avidin-biotin microtiter enzyme-linked immunosorbant assay (AB-microELISA) was performed in polyvinyl chloride microtiter plates using biotinylated anti-IgE and horseradish peroxidase (HRP)-avidin conjugate. This AB-microELISA technique enabled the quantitation of human serum IgE in the range of 0.1–5 ng/ml (10–500 pg/test) in less than 3 h. Total serum IgE, whether measured by the AB-microELISA or the paper radioimmunosorbant test (PRIST) was similar (correlation coefficient, r = 0.92). Further, the presence or absence of positive skin tests to 7 specific allergens determined in serum donors generally agreed with the presence or absence of allergen-specific IgE in their sera as measured by the AB-microELISA. The quantity of short ragweed allergen-specific IgE as determined by the AB-microELISA agreed with values obtained by the radioimmunosorbant test (RAST) (correlation coefficient, r = 0.89). No significant interference by ragweed-specific IgG (blocking antibody) was observed in the quantitation of allergen-specific IgE. The AB-microELISA is not only rapid and inexpensive, but also more sensitive than other published ELISA procedures and comparable to solid-phase radioimmunoassays in the quantitation of total and allergen-specific IgE.
Resumo:
Abstract is not available.
Resumo:
A rapid and sensitive method is described to quantitatively compare tRNA pools for individual aminoacids in a single experiment. The procedure comprises of: (i) charging of total tRNA with a mixture of radiolabeled aminoacids, (ii) deacylation of the esterified tRNA with a volatile base and the recovery of the labeled aminoacid, (iii) derivatisation of the aminoacid with phenylisothiocyanate after mixing with excess of nonradioactive aminoacids, (iv) baseline separation of the phenylthiocarbamyl aminoacids by reverse phase high performance liquid chromatography monitored by A254nm and (v) quantitation of the radioactivity in individual aminoacid peaks. The radioactivity in the aminoacid peak corresponds to the quantity of the aminoacylated tRNA. The method has been successfully applied to quantitate the individual tRNA pools in the developing silk glands of Bombyx mori, a functionally adapted tissue which undergoes considerable variations in tRNA content. PSG, posterior silk gland; PITC, phenylisothiocyanate; DMAA, N,N-dimethyl-N-allylamine; APH, algal protein hydrolysate; ptc-, phenylthiocarbamyl; HPLC, high performance liquid chromatography.
Resumo:
The effect of rapid solidification on the ordering reaction in Fe---Si and Fe---Al alloys has been reported. It is shown that rapid solidification can influence the ordering reaction in alloys with higher critical ordering temperatures. For ordering reactions at lower temperatures, the effect is similar to that of solid-state quenching. Different factors influencing the ordering reactions and domain structures during rapid solidification of iron-based alloys are discussed.
Resumo:
A very concise and diversity-oriented approach to rapidly access frondosin-related frameworks from commercially available building blocks is outlined.
Resumo:
Experiments are described which show that a monobath can be used for rapid in situ processing in a liquid gate for real-time holographic interferometry. This also permits utilization of a very simple solution handling system. Changes in emulsion thickness are reduced to an acceptable level and problems of matching refractive indices are eliminated by exposing and viewing the holograms in water. Excellent null patterns are obtained and real-time holographic interferometry can be carried out over long periods of time.
Resumo:
The performance of optoelectronic devices critically depends on the quality of active layer. An effective way to obtain a high quality layers is by creating excess of metal atoms through various heat treatments. Recently, rapid thermal annealing (RTA) has proved a versatile technique for the post-treatment of semiconductor materials as compared to other techniques due to its precise control over the resources. Thus, we carried out a set of experiments on SnS films to explore the influence of RTA treatment on their properties. From these experiments we noticed that the films treated at 400 °C for 1 min in N2 atmosphere have a low electrical resistivity of ~5 Ωcm with relatively high Hall mobility and carrier density of 99 cm2/Vs and 1.3 × 1016 cm−3, respectively. The observed results, therefore, emphasise that it is possible to obtain good quality SnS films through RTA treatment without disturbing their crystal structure.
Resumo:
Testing for mutagenicity and carcinogenicity has become an integral part of the toxicological evaluation of drugs and chemicals. Standard carcinogenicity tests in vivo require both large numbers of animals and prolonged experiments. To circumvent these problems, several rapid tests have been developed for preliminary screening of mutagens and carcinogens in vitro. Ames and his associates, the first to develop a mutation test, used mutant strains of Salmonella typhimurium [1]. Mutation tests with Escherichia coli, Bacillus subtilis, Neurospora crassa and Saccharomyces cerevisiae, and DNA-repair tests with E. coli and B. subtilis, have been developed. Cytogenetic assays, in vivo as well as in vitro, in both plant and animal systems, are also used to detect potential mutagens and carcinogens. Transfection is inhibited by base mutation, cleavage of DNA, loss of cohesive ends, interaction with histones, spermidine, nalidixic acid, etc. [3]. The efficiency of transfection is affected by temperature, DNA structure and the condition of the competence of the recipient cells [3]. Transfection assays with phages MS: RNA and ~i, x 174-DNA have been reported [15]. A fast and easy transfection assay using colitis bacteriophage DNA is reported in this communication.
Resumo:
LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.
Resumo:
A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed to estimate the effect of sudden but arbitrary three-dimensional distortion on homogeneous, initially axisymmetric turbulence. The energy changes due to distortion are expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the two independent scalar functions that describe the axisymmetric spectral tensor. However, for two special but non-trivial forms of this tensor, which represent possibly the simplest kinds of non-isotropic turbulence and specify the angular distribution but not the wavenumber dependence, the energy ratios have been determined in closed form. The deviation of the ratio from its isotropic value is the product of a factor containing R, the initial value of the ratio of the longitudinal to the transverse energy component, and another factor depending only on the geometry of the distortion. It is found that, in axisymmetric and large two-dimensional contractions, the isotropic theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates the increase in the transverse energy; the product of the two intensities varies little unless the distortion is very large, thus accounting for the stress-freezing observed in rapidly accelerated shear flows.Comparisons with available experimental data for the spectra and for the energy ratios show reasonable agreement. The different ansatzes predict results in broad qualitative agreement with a simple strategem suggested by Reynolds & Tucker (1975), but the quantitative differences are not always negligible.