13 resultados para Railroad trains

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts causal influence on another. For continuous-valued time series data, Granger causality has proven an effective method for this purpose. However, the basis for Granger causality estimation is autoregressive data modeling, which is not directly applicable to spike trains. Various filtering options distort the properties of spike trains as point processes. Here we propose a new nonparametric approach to estimate Granger causality directly from the Fourier transforms of spike train data. We validate the method on synthetic spike trains generated by model networks of neurons with known connectivity patterns and then apply it to neurons limultaneously recorded from the thalamus and the primary somatosensory cortex of a squirrel monkey undergoing tactile stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential firings with fixed time delays are frequently observed in simultaneous recordings from multiple neurons. Such temporal patterns are potentially indicative of underlying microcircuits and it is important to know when a repeatedly occurring pattern is statistically significant. These sequences are typically identified through correlation counts. In this paper we present a method for assessing the significance of such correlations. We specify the null hypothesis in terms of a bound on the conditional probabilities that characterize the influence of one neuron on another. This method of testing significance is more general than the currently available methods since under our null hypothesis we do not assume that the spiking processes of different neurons are independent. The structure of our null hypothesis also allows us to rank order the detected patterns. We demonstrate our method on simulated spike trains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of detecting statistically significant sequential patterns in multineuronal spike trains. These patterns are characterized by ordered sequences of spikes from different neurons with specific delays between spikes. We have previously proposed a data-mining scheme to efficiently discover such patterns, which occur often enough in the data. Here we propose a method to determine the statistical significance of such repeating patterns. The novelty of our approach is that we use a compound null hypothesis that not only includes models of independent neurons but also models where neurons have weak dependencies. The strength of interaction among the neurons is represented in terms of certain pair-wise conditional probabilities. We specify our null hypothesis by putting an upper bound on all such conditional probabilities. We construct a probabilistic model that captures the counting process and use this to derive a test of significance for rejecting such a compound null hypothesis. The structure of our null hypothesis also allows us to rank-order different significant patterns. We illustrate the effectiveness of our approach using spike trains generated with a simulator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hardware and the software details of a user-friendly, simple, flexible and inexpensive pulse programmer using programmable counters interfaced to a microprocessor are described. The control of the various parameters that are required for NMR applications is implemented using the microprocessor. The basic hardware is extendable to other applications which require programmable pulse trains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kim SS, Sripati AP, Bensmaia SJ. Predicting the timing of spikes evoked by tactile stimulation of the hand. J Neurophysiol 104: 1484-1496, 2010. First published July 7, 2010; doi: 10.1152/jn.00187.2010. What does the hand tell the brain? Tactile stimulation of the hand evokes remarkably precise patterns of neural activity, suggesting that the timing of individual spikes may convey information. However, many aspects of the transformation of mechanical deformations of the skin into spike trains remain unknown. Here we describe an integrate-and-fire model that accurately predicts the timing of individual spikes evoked by arbitrary mechanical vibrations in three types of mechanoreceptive afferent fibers that innervate the hand. The model accounts for most known properties of the three fiber types, including rectification, frequency-sensitivity, and patterns of spike entrainment as a function of stimulus frequency. These results not only shed light on the mechanisms of mechanotransduction but can be used to provide realistic tactile feedback in upper-limb neuroprostheses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large amplitude stationary Rossby wave trains with wavelength in the range 50 degrees to 60 degrees longitude have been identified in the upper troposphere during May, through the analysis of 200 hPa wind anomalies. The spatial phase of these waves has been shown to differ by about 20 degrees of longitude between the dry and wet Indian monsoon years. It has been shown empirically that the Rossby waves are induced by the heat sources in the ITCZ. These heat sources appear in the Bay of Bengal and adjoining regions in May just prior to the onset of the Indian summer monsoon. The inter-annual spatial phase shift of the Rossby waves has been shown to be related to the shift in the deep convection in the zonal direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ballast fouling is created by the breakdown of aggregates or outside contamination by coal dust from coal trains, or from soil intrusion beneath rail track. Due to ballast fouling, the conditions of rail track can be deteriorated considerably depending on the type of fouling material and the degree of fouling. So far there is no comprehensive guideline available to identify the critical degree of fouling for different types of fouling materials. This paper presents the identification of degree of fouling and types of fouling using non-destructive testing, namely seismic surface-wave and ground penetrating radar (GPR) survey. To understand this, a model rail track with different degree of fouling has been constructed in Civil engineering laboratory, University of Wollongong, Australia. Shear wave velocity obtained from seismic survey has been employed to identify the degree of fouling and types of fouling material. It is found that shear wave velocity of fouled ballast increases initially, reaches optimum fouling point (OFP), and decreases when the fouling increases. The degree of fouling corresponding after which the shear wave velocity of fouled ballast will be smaller than that of clean ballast is called the critical fouling point (CFP). Ground penetrating radar with four different ground coupled antennas (500 MHz, 800 MHz, 1.6 GHz and 2.3 GHz) was also used to identify the ballast fouling condition. It is found that the 800 MHz ground coupled antenna gives a better signal in assessing the ballast fouling condition. Seismic survey is relatively slow when compared to GPR survey however it gives quantifiable results. In contrast, GPR survey is faster and better in estimating the depth of fouling. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A balance between excitatory and inhibitory synaptic currents is thought to be important for several aspects of information processing in cortical neurons in vivo, including gain control, bandwidth and receptive field structure. These factors will affect the firing rate of cortical neurons and their reliability, with consequences for their information coding and energy consumption. Yet how balanced synaptic currents contribute to the coding efficiency and energy efficiency of cortical neurons remains unclear. We used single compartment computational models with stochastic voltage-gated ion channels to determine whether synaptic regimes that produce balanced excitatory and inhibitory currents have specific advantages over other input regimes. Specifically, we compared models with only excitatory synaptic inputs to those with equal excitatory and inhibitory conductances, and stronger inhibitory than excitatory conductances (i.e. approximately balanced synaptic currents). Using these models, we show that balanced synaptic currents evoke fewer spikes per second than excitatory inputs alone or equal excitatory and inhibitory conductances. However, spikes evoked by balanced synaptic inputs are more informative (bits/spike), so that spike trains evoked by all three regimes have similar information rates (bits/s). Consequently, because spikes dominate the energy consumption of our computational models, approximately balanced synaptic currents are also more energy efficient than other synaptic regimes. Thus, by producing fewer, more informative spikes approximately balanced synaptic currents in cortical neurons can promote both coding efficiency and energy efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a `footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by similar to 50% in generator potentials, to similar to 3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Awareness for the need of sustainable and eco-friendly mobility has been increasing and various innovations are taking place in this regard. A study was carried out to assess the feasibility of installing solar photovoltaic (PV) modules atop train coaches. Most long-distance trains having LHB coaches do not have self-generating systems, thus making power cars mandatory to supply the required power for lighting loads. Feasibility of supplementing diesel generator sets with power from solar PV modules installed on coach rooftops has been reported in this communication. Not only is there a conservation of fuel, there is also a significant reduction in CO2 emissions. This work has shown that the area available on coach rooftops is more than sufficient to generate the required power, during sunlight hours, for the electrical loads of a non-A/C coach even during winter. All calculations were done keeping a standard route as the reference. Taking the cost of diesel to be Rs 66/litre, it was estimated that there will be annual savings of Rs 5,900,000 corresponding to 90,800 litres diesel per rake per year by implementing this scheme. The installation cost of solar modules would be recovered within 2-3 years. Implementation of this scheme would also amount to an annual reduction of 239 tonnes of CO2 emissions.