10 resultados para RESORPTION

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new working pairs, R21-NMP and R21-DMA, find potential application as working pairs for the single stage Resorption Heat Pump (RHP) and the Resorption Heat Transformer (RHT) cycles. A thermodynamic cycle analysis with these pairs shows that single stage RHPs have high COPs in their entire range of operation. RHTs show higher temperature boosts (up to 47 K) than the simple absorption heat transformers. Absorber temperatures of up to 400 K can be achieved in a single stage RHT system using R21 as the refrigerant. However, absorption-resorption systems have inherent limitations on the range of operating temperatures. Besides, they necessitate a higher pump work as compared to simple single stage absorption heating systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a thermodynamic cycle analysis of single stage resorption heat pump (RHP) and resorption heat transformer (RHT) cycles with the new working pairs R22-NMP and R22-DMA. The coefficients of performance (COP) are correlated with the low grade source temperature, temperature at which useful heat is obtained and ambient temperature. The COPs are in the range 1.20–1.60 for the RHP mode and 0.25–0.45 for the RHT mode. Absorber temperatures (useful temperatures) as high as 50°C in the RHP mode and 87°C in the RHT mode have been obtained. It is observed that absorption-resorption systems are inflexible in their range of operating temperature and necessitate a higher pump work as compared with simple single-stage absorption heating systems. However, single stage RHTs show higher temperature boosts than simple absorption heat transformers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chicken riboflavin carrier protein (RCP) is a phosphoglycoprotein present in the egg white and yolk of egg-laying animals and in the sera of laying hens and of estrogenized chicks. The RCP cDNA, encoding a protein of predictedMr27,000, has been cloned into a T7 polymerase-driven vector, and high-level expression was observed on induction with IPTG inEscherichia coli.The protein was largely localized in inclusion bodies when expressed at 37°C but was present in the cytosolic fraction when induced at 22°C. At 37°C, two major bands were detected in whole-cell lysates of the strain expressing the protein. N-terminal sequence analysis indicated that the two proteins represented translated products with and without the pelB leader sequence encoded in the pET20b vector, but both included an additional 10 amino acids generated during cloning procedures. The inclusion body obtained at 37°C, on extraction with detergent, led to preferential solubilization of the protein without the pelB signal sequence. The solubilized recombinant RCP was recognized by polyclonal antisera to native RCP but radioimmunoassay revealed quantitative differences in the epitopes exhibited by the recombinant protein. Thus, sequence-specific monoclonal antibodies to chicken RCP also cross-reacted with the recombinant protein with almost equal efficiency, but antibodies which recognize conformation-dependent epitopes showed relatively reduced cross-reactivity with the recombinant protein. Polyclonal antibodies to recombinant RCP were able to recognize both the native and the denatured RCP. Administration of recombinant RCP antisera to pregnant mice led to embryonic resorption leading to early pregnancy termination. These findings reveal that the recombinant protein will be useful for investigations related to the mechanism of pregnancy termination on immunoneutralization of RCP in mammals, as well as in unraveling folding properties of RCP in terms of its ligand binding and antigenetic determinants exposed at its surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a disease of low bone mass most often caused by an increase in bone resorption that is not sufficiently compensated for by a corresponding increase in bone formation(1). As gut-derived serotonin (GDS) inhibits bone formation(2), we asked whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is, by increasing bone formation). We synthesized and used LP533401, a small molecule inhibitor of tryptophan hydroxylase-1 (Tph-1), the initial enzyme in GDS biosynthesis. Oral administration of this small molecule once daily for up to six weeks acts prophylactically or therapeutically, in a dose-dependent manner, to treat osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide a proof of principle that inhibiting GDS biosynthesis could become a new anabolic treatment for osteoporosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moudgal and co-workers1-3 recently reported that the administration to intact pregnant rats of rabbit antiserum ovine interstitial cell stimulating hormone (ICSH) on any one day between the eighth and twelfth days of pregnancy resulted in resorption of foetuses and termination of pregnancy. This effect was readily reversed by the simultaneous administration of progesterone but not by oestradiol-17β. These observations suggested that ICSH was involved in progesterone synthesis and as such is a luteotropic factor in the rat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoneutralization of the maternal riboflavin carrier protein in the pregnant rat with antibodies to chicken egg vitamin carrier has earlier been shown to terminate their pregnancies. In order to understand the nature of the epitopic conformations capable of eliciting antibodies bioneutralizing the endogenous riboflavin carrier protein in the pregnant rat, we compared pregnancy progression in the fertile rodents following active immunization with either the native, SDS-denatured, reduced-carboxymethylated or SDS-treated reduced carboxymethylated avian egg white riboflavin carrier protein. The data revealed that despite the total antibody titers being higher in the animals immunized with the native protein, the antibodies elicited against the denatured avian vitamin carrier exhibited relatively better potencies to bioneutralize the endogenous maternal protein as evidenced by higher rates of early fetal resorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoclonal antibodies (mAbs) to chicken thiamin carrier protein (TCP) have been produced by hybridoma technology to identify the crucial epitopes involved in bioneutralization of the vitamin carrier. The monoclonality of these mAbs (A4C4, F3H6, H8H3, C8C1 and G7H10) was sought to be confirmed by sub-class isotyping; they all belong to IgG1, k type. The epitopes recognized by all the five mAbs are conserved in TCP from the chicken to the rat as assessed by liquid phase RIA and immunoprecipitation of I-125-labelled proteins from pregnant rat serum. Among these mAbs, passive immunization of pregnant rats with the mAb C8C1 only on three consecutive days (day 10, 11 and 12) resulted in embryonic resorption. These results demonstrate the importance of epitopic structure specified by the mAb C8C1 on TCP during pregnancy in rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesium and its alloys are an emerging class of resorbable materials for orthopedic and cardiovascular applications. The typical strategy underlying the development of these materials involves the control of material processing routes and the addition of alloying elements. Crystallographic texture is known to control bulk mechanical as well as surface properties. However, its role in determining the properties of magnesium for implant materials has not been well studied. In this work, an extruded rod of pure magnesium was cut in multiple directions to generate samples with different textures. It was found that texture significantly affected the strength and ductility of magnesium. Corrosion rates in Hank's solution decreased with the increased presence of low energy basal planes at the surface. In vitro cell studies revealed that changes in texture did not induce cytotoxicity. Thus, the control of texture in magnesium based implants could be used to tailor the mechanical properties and the resorption rates without compromising cytocompatibility. This study elucidates the importance of texture in the use of magnesium as a resorbable biomaterial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the potential of using novel zoledronic acid (ZOL)-hydroxyapatite (HA) nanoparticle based drug formulation in a rat model of postmenopausal osteoporosis. By a classical adsorption method, nanoparticles of HA loaded with ZOL (HNLZ) drug formulation with a size range of 100-130 nm were prepared. 56 female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into seven groups and treated with various doses of HNLZ (100, 50 and 25 mu g/kg, intravenous single dose), ZOL (100 mu g/kg, intravenous single dose) and HA nanoparticle (100 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. After three months treatment period, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for trabecular microarchitecture. Sensitive biochemical markers of bone formation and bone resorption in serum were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the therapy with HNLZ drug formulation was more effective than ZOL therapy in OVX rats. Moreover, HNLZ drug therapy preserved the trabecular microarchitecture better than ZOL therapy in OVX rats. Furthermore, the HNLZ drug formulation corrected increase in serum levels of bone-specific alkaline phosphatase, procollagen type I N-terminal propeptide, osteocalcin, tartrate-resistant acid phosphatase 5b and C-telopeptide of type 1 collagen better than ZOL therapy in OVX rats. The results strongly suggest that HNLZ novel drug formulation appears to be more effective approach for treating severe osteoporosis in humans. (C) 2014 Elsevier B.V. All rights reserved.