7 resultados para Réparation par excision de nucléotides

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that uracil DNA glycosylase from E. coli excises uracil residues from the ends of double stranded oligos. This information has allowed us to develop an efficient method of cloning PCR amplified DNA. In this report, we describe use of this method in cloning of E. coli genes for lysyl- and methionyl-tRNA synthetases. Efficiency of cloning by this method was found to be the same as that of subcloning of DNA restriction fragments from one vector to the other vector. Possibilities of using other DNA glycosylases for such applications are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetic parameters for uracil DNA glycosylase (E.coli)-catalysed excision of uracil from DNA oligomers containing dUMP in different structural contexts were determined. Our results show that single-stranded oligonucleotides (unstructured) are used as somewhat better substrates than the double-stranded oligonucleotides. This is mainly because of the favourable V-max value of the enzyme for single-stranded substrates. More interestingly, however, we found that uracil release from loop regions of DNA hairpins is extremely inefficient. The poor efficiency with which uracil is excised from loop regions is a result of both increased K-m and lowered V-max values. This observation may have significant implications in uracil DNA glycosylase-directed repair of DNA segments that can be extruded as hairpins. In addition, these studies are useful in designing oligonucleotides for various applications in DNA research where the use of uracil DNA glycosylase is sought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional NMR and molecular dynamics simulations have been used to determine the three-dimensional structures of two hairpin DNA structures: d-CTAGAG GATCCUTTTGGATCCT (abbreviated as U1-hairpin) and d-CTAGAGGATCCTTUTGGATCCT (abbreviated as U3-hairpin). The (1) H resonances of both of these hairpin structures have been assigned almost completely. NMR restrained molecular dynamics and energy minimization procedures have been used to describe the three-dimensional structures of these hairpins. This study and concurrent NMR structural studies on two other d-CTAGAGGA TCCTUTTGGATCCT (abbreviated as U2-hairpin) and d-CTAGAGGATCCTTTUGGATCCT (abbreviated as U4-hairpin) have shed light upon various interactions reported between Echerichia coli uracil DNA glycosylase (UDG) and uracil-containing DNA. The backbone torsion angles, which partially influence the local conformation of U12 and U14 in U1 and U3-hairpins, respectively, are probably locked in the trans conformation as in the case of U-13 in the U2-hairpin. Such a stretched-out backbone conformation in the vicinity of U-12 and U-14 is thought to be the reason why the K-m value is poor for U1- and U3-hairpins as it is for the U2-hairpin. Furthermore, the bases U-12 and U-14 in both U1- and U3-hairpins adopt an anti conformation, in contrast with the base conformation of U-13 in the U2-hairpin, which adopts a syn conformation. The clear discrepancy observed in the U-base orientation with respect to the sugar moieties could explain why the V-max value is 10- to 20-fold higher for the U1- and U3-hairpins compared with the U2-hairpin. Taken together, these observations support our interpretation that the unfavourable backbone results in a poor K-m value, whereas the unfavourable nucleotide conformation results in a poor V-max value. These two parameters therefore make the U1- and U3-hairpins better substrates for UDG compared with the U2-hairpin, as reported earlier [Kumar, N. V. & Varshney, U. (1997) Nucleic Acids Res. 25, 2336-2343.].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. The bacterium displays an excellent adaptability to survive within the host macrophages. As the reactive environment of macrophages is capable of inducing DNA damage, the ability of the pathogen to safeguard its DNA against the damage is of paramount significance for its survival within the host. Analysis of the genome sequence has provided important insights into the DNA repair machinery of the pathogen, and the studies on DNA repair in mycobacteria have gained momentum in the past few years. The studies have revealed considerable differences in the mycobacterial DNA repair machinery when compared with those of the other bacteria. This review article focuses especially on the aspects of base excision, and nucleotide excision repair pathways in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMAD reactor maintained at 77 K. Warming of the matrix results in a slurry of metal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the primitively eusocial wasp Ropalidia marginata, mating is not necessary for a female wasp to develop her ovaries, lay eggs, and even to become the sole egg layer of her colony despite the presence of other mated nestmates. Here, we show that virgin wasps do not differ from their mated counterparts in the extent and rapidity of their ovarian development, in the proportion of individuals that build a nest and laid eggs, and in the time taken to do so. However, a significantly larger proportion of virgin females showed resorbing oocytes, and laid fewer eggs as compared to mated individuals. Thus, virgin females have the ability to develop ovaries and lay eggs but also to refrain from necessarily laying all mature eggs produced, before mating opportunities arise. This dual ability would be adaptive in haplodiploid, tropical species with perennial nesting cycles and frequent opportunities for workers to become replacement queens or solitary nest foundresses throughout the year.