1 resultado para Quotations, Hebrew.

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.