4 resultados para Queuing analysis

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents stylized models for conducting performance analysis of the manufacturing supply chain network (SCN) in a stochastic setting for batch ordering. We use queueing models to capture the behavior of SCN. The analysis is clubbed with an inventory optimization model, which can be used for designing inventory policies . In the first case, we model one manufacturer with one warehouse, which supplies to various retailers. We determine the optimal inventory level at the warehouse that minimizes total expected cost of carrying inventory, back order cost associated with serving orders in the backlog queue, and ordering cost. In the second model we impose service level constraint in terms of fill rate (probability an order is filled from stock at warehouse), assuming that customers do not balk from the system. We present several numerical examples to illustrate the model and to illustrate its various features. In the third case, we extend the model to a three-echelon inventory model which explicitly considers the logistics process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is presented to model server unreliability in closed queuing networks. Breakdowns and repairs of servers, assumed to be time-dependent, are modeled using virtual customers and virtual servers in the system. The problem is thus converted into a closed queue with all reliable servers and preemptive resume priority centers. Several recent preemptive priority approximations and an approximation of the one proposed are used in the analysis. This method has approximately the same computational requirements as that of mean-value analysis for a network of identical dimensions and is therefore very efficient

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high cost and extraordinary demands made on sophisticated air defence systems, pose hard challenges to the managers and engineers who plan the operation and maintenance of such systems. This paper presents a study aimed at developing simulation and systems analysis techniques for the effective planning and efficient operation of small fleets of aircraft, typical of the air force of a developing country. We consider an important aspect of fleet management: the problem of resource allocation for achieving prescribed operational effectiveness of the fleet. At this stage, we consider a single flying-base, where the operationally ready aircraft are stationed, and a repair-depot, where the planes are overhauled. An important measure of operational effectiveness is ‘ availability ’, which may be defined as the expected fraction of the fleet fit for use at a given instant. The tour of aircraft in a flying-base, repair-depot system through a cycle of ‘ operationally ready ’ and ‘ scheduled overhaul ’ phases is represented first by a deterministic flow process and then by a cyclic queuing process. Initially the steady-state availability at the flying-base is computed under the assumptions of Poisson arrivals, exponential service times and an equivalent singleserver repair-depot. This analysis also brings out the effect of fleet size on availability. It defines a ‘ small ’ fleet essentially in terms of the important ‘ traffic ’ parameter of service rate/maximum arrival rate.A simulation model of the system has been developed using GPSS to study sensitivity to distributional assumptions, to validate the principal assumptions of the analytical model such as the single-server assumption and to obtain confidence intervals for the statistical parameters of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a cooperative relay-assisted communication system that uses rateless codes, packets get transmitted from a source to a destination at a rate that depends on instantaneous channel states of the wireless links between nodes. When multiple relays are present, the relay with the highest channel gain to the source is the first to successfully decode a packet from the source and forward it to the destination. Thus, the unique properties of rateless codes ensure that both rate adaptation and relay selection occur without the transmitting source or relays acquiring instantaneous channel knowledge. In this paper, we show that in such cooperative systems, buffering packets at relays significantly increases throughput. We develop a novel analysis of these systems that combines the communication-theoretic aspects of cooperation over fading channels with the queuing-theoretic aspects associated with buffering. Closed-form expressions are derived for the throughput and end-to-end delay for the general case in which the channels between various nodes are not statistically identical. Corresponding results are also derived for benchmark systems that either do not exploit spatial diversity or do not buffer packets. Altogether, our results show that buffering - a capability that will be commonly available in practical deployments of relays - amplifies the benefits of cooperation.