6 resultados para Quebec song
em Indian Institute of Science - Bangalore - Índia
Changing resonator geometry to boost sound power decouples size and song frequency in a small insect
Resumo:
Despite their small size, some insects, such as crickets, can produce high amplitude mating songs by rubbing their wings together. By exploiting structural resonance for sound radiation, crickets broadcast species-specific songs at a sharply tuned frequency. Such songs enhance the range of signal transmission, contain information about the signaler's quality, and allow mate choice. The production of pure tones requires elaborate structural mechanisms that control and sustain resonance at the species-specific frequency. Tree crickets differ sharply from this scheme. Although they use a resonant system to produce sound, tree crickets can produce high amplitude songs at different frequencies, varying by as much as an octave. Based on an investigation of the driving mechanism and the resonant system, using laser Doppler vibrometry and finite element modeling, we show that it is the distinctive geometry of the crickets' forewings (the resonant system) that is responsible for their capacity to vary frequency. The long, enlarged wings enable the production of high amplitude songs; however, as a mechanical consequence of the high aspect ratio, the resonant structures have multiple resonant modes that are similar in frequency. The drive produced by the singing apparatus cannot, therefore, be locked to a single frequency, and different resonant modes can easily be engaged, allowing individual males to vary the carrier frequency of their songs. Such flexibility in sound production, decoupling body size and song frequency, has important implications for conventional views of mate choice, and offers inspiration for the design of miniature, multifrequency, resonant acoustic radiators.
Resumo:
Experimental studies reveal a reduction in the values of permittivity for epoxy nanocomposites; at low filler loadings as compared to neat epoxy over a wide frequency range. This permittivity reduction is attributed to the interaction dynamics between nanoparticles: and epoxy chains at the interface region and interestingly, this interaction has also been found to influence the glass transition temperatures (T-g) of the examined nanocomposite systems. Accordingly, a dual nanolayer interface model for an epoxy based nanocomposite system is analyzed to explain the obtained permittivity characteristics.
Resumo:
Multistress aging of outdoor composite polymeric insulators continues to be a topic of interest for power transmission research community. Aging due to dry conditions alone at elevated temperatures and electric stress in the presence of UV radiation environment probably has not been explored. This paper deals with long-term accelerated multistress aging under the above conditions on full-scale 11 kV distribution class composite silicone rubber insulators. To evaluate the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they were subjected to accelerated aging in a specially designed multistress-aging chamber for 12000 hours. Chemical, physical and electrical changes due to degradation have been assessed using various techniques. It has been found that the content of low molecular weight molecules and hydrophobicity reduced significantly. Also, due to oxidation and aging there is appreciable increase in surface roughness and weight percentage of oxygen. Study is under progress and only intermediate results are presented in this paper.
Resumo:
One of the problems associated with outdoor polymeric insulators is tracking and erosion of the weathershed which can directly influence the reliability of the power system. Flame retardants are added to the base material to enhance its tracking and erosion resistance. Hydroxide fillers are regarded as the best flame retardants. This paper deals with studies related to nano - sized magnesium dihydroxide (MDH) and micron-sized Alumina Trihydrate (ATH) fillers as flame retardants in RTV silicone rubber. Tracking and erosion resistance studies were carried out on MDH and ATH silicone rubber composites using an inclined plane tracking and erosion (IPT) resistance tester. The MDH filled (5% by wt) composites performed much better than ATH composites in terms of eroded mass, depth of erosion, width and length of erosion. The eroded mass of MDH composite is 49.8 % that of ATH composite which can be attributed to high surface area and higher thermal stability of MDH nanofillers.
Resumo:
This paper reports the electrical discharge resistant characteristics of epoxy nanocomposite systems with SiO2 and Al2O3 nano-fillers. A comparative study is performed between unfilled epoxy systems, nanoparticle filled epoxy systems and a bimodal system containing both micrometer and nanometer sized fillers of the same material. The samples are exposed to surface discharges and the levels of surface degradation are analyzed through SEM and surface roughness measurements. Significant variations were observed in the electrical discharge resistant characteristics between the different composite systems and it is seen that the introduction of nano-fillers to epoxy is advantageous in improving the electrical discharge resistance of epoxy.
Resumo:
The paper presents a new adaptive delta modulator, called the hybrid constant factor incremental delta modulator (HCFIDM), which uses instantaneous as well as syllabic adaptation of the step size. Three instantaneous algorithms have been used: two new instantaneous algorithms (CFIDM-3 and CFIDM-2) and the third, Song's voice ADM (SVADM). The quantisers have been simulated on a digital computer and their performances studied. The figure of merit used is the SNR with correlated, /?C-shaped Gaussian signals and real speech as the input. The results indicate that the hybrid technique is superior to the nonhybrid adaptive quantisers. Also, the two new instantaneous algorithms developed have improved SNR and fast response to step inputs as compared to the earlier systems.