254 resultados para Quantum optics

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multimode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beam splitters, in a transparent manner. For single-mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beam splitter, these conditions turn exactly into signatures of negativity under partial transpose (NPT) entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beam-splitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three-mode beam-splitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnS quantum dots (QDs) of different sizes are synthesized by a simple chemical co-precipitation method at room temperature, by varying pH value of the reaction mixture. Samples are characterized by an X-ray diffractometer, transmission electron microscope, energy-dispersive X-ray analysis, etc. Linear optical properties, including UV-visible absorption and photoluminescence emission characteristics, of as-prepared QDs are measured. Size dependent nonlinear optical property, such as second harmonic generation (SHG) of 1064 nm Nd:YAG laser fundamental radiation in the synthesized ZnS QDs, is reported for the first time, to the best of our knowledge, by using the standard Kurtz-Perry powder method. In not to study the possibility of the synthesized ZnS QDs in different device applications ZnS/PMMA (polymethylmethacrylate) nanocomposites are also synthesized. The presence of weak chemical interaction between the polymer matrix and ZnS QDs is confirmed by Fourier transform infrared spectroscopy. Thermal properties of the nanocomposites are studied by differential scanning calorimetry and thermo-gravimetric analysis techniques, which show that the composites are stable up to similar to 300 degrees C temperature. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the report of the QCD working sub-group at the Tenth Workshop on High Energy Physics Phenomenology (WHEPP-X).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature electroluminescence (EL) is observed in n-type modulation-doped AlGaAs/InGaAs/GaAs quantum well samples by applying a positive voltage between the semitransparent Au gate and alloyed Au–Ge Ohmic contacts made on the top surface of the samples. We attribute impact ionization in the InGaAs QW to the observed EL from the samples. A redshift in the EL spectra is observed with increasing gate bias. The observed redshift in the EL spectra is attributed to the band gap renormalization due to many-body effects and quantum-confined Stark effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the growth and characterization of quantum dot−quantum well nanostructures with photoluminescence (PL) that is tunable over the visible range. The material exhibits a PL efficiency as high as 60% and is prepared by reacting ZnS nanocrystals in turn with precursors for CdSe and ZnS in an attempt to form a simple “ZnS/CdSe/ZnS quantum-well structure”. Through the use of synchrotron radiation-based photoelectron spectroscopy in conjunction with detailed overall compositional analysis and correlation with the size of the final composite nanostructure, the internal structure of the composite nanocrystals is shown to consist of a graded alloy core whose composition gradually changes from ZnS at the very center to CdSe at the onset of a CdSe layer. The outer shell is ZnS with a sharp interface, probably reflecting the relative thermodynamic stabilities of the parent binary phases. These contrasting aspects of the internal structure are discussed in terms of the various reactivities and are shown to be crucial for understanding the optical properties of such complex heterostructured nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PbS quantum dots capped with mercaptoethanol (C2H5OSH) have been synthesized in poly vinyl alcohol and used to investigate their photoluminescence (PL) response to various ions such as zinc (Zn), cadmium (Cd), mercury (Hg), silver (Ag), copper (Cu), iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr) and nickel (Ni). The enhancement in the PL intensity was observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations was quite high, compared to that of Zn and Cd. It was observed that the change in Pb and S molar ratio has profound effect on the sensitivity of these ions. These results indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu quenched the photoluminescence. In Cd based QDs related ion probing, Hg and Cu was found to have quenching properties, however, our PbS QDs have quenching property only for Cu ions. This was attributed to the formation HgS at the surface that has bandgap higher than PbS. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa). which is an interesting feature for metal ion detectivity.