291 resultados para QUANTUM COMPUTATION
em Indian Institute of Science - Bangalore - Índia
Resumo:
Adiabatic quantum computation is based on the adiabatic evolution of quantum systems. We analyze a particular class of quantum adiabatic evolutions where either the initial or final Hamiltonian is a one-dimensional projector Hamiltonian on the corresponding ground state. The minimum-energy gap, which governs the time required for a successful evolution, is shown to be proportional to the overlap of the ground states of the initial and final Hamiltonians. We show that such evolutions exhibit a rapid crossover as the ground state changes abruptly near the transition point where the energy gap is minimum. Furthermore, a faster evolution can be obtained by performing a partial adiabatic evolution within a narrow interval around the transition point. These results generalize and quantify earlier works.
Resumo:
Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2 pi rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.
Resumo:
The experimental implementation of a quantum algorithm requires the decomposition of unitary operators. Here we treat unitary-operator decomposition as an optimization problem, and use a genetic algorithm-a global-optimization method inspired by nature's evolutionary process-for operator decomposition. We apply this method to NMR quantum information processing, and find a probabilistic way of performing universal quantum computation using global hard pulses. We also demonstrate the efficient creation of the singlet state (a special type of Bell state) directly from thermal equilibrium, using an optimum sequence of pulses. © 2012 American Physical Society.
Resumo:
The experimental implementation of a quantum algorithm requires the decomposition of unitary operators. Here we treat unitary-operator decomposition as an optimization problem, and use a genetic algorithm-a global-optimization method inspired by nature's evolutionary process-for operator decomposition. We apply this method to NMR quantum information processing, and find a probabilistic way of performing universal quantum computation using global hard pulses. We also demonstrate the efficient creation of the singlet state (a special type of Bell state) directly from thermal equilibrium, using an optimum sequence of pulses.
Resumo:
We report magnetic trapping of Yb in the excited P-3(2) state. This state, with a lifetime of 15 s, could play an important role in studies ranging from optical clocks and quantum computation to the search for a permanent electric dipole moment. Yb atoms are first cooled and trapped in the ground state in a 399-nm magneto-optic trap. The cold atoms are then pumped into the excited state by driving the S-1(0) -> P-3(1) -> S-3(1) transition. Atoms in the P-3(2) state are magnetically trapped in a spherical quadrupole field with an axial gradient of 110 G/cm. We trap up to 10(6) atoms with a lifetime of 1.5 s.
Resumo:
Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any physical system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.
Resumo:
Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are C-13 nuclear spins and the environment consists of a H-1 nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.
Resumo:
Competition for available resources is natural amongst coexisting species, and the fittest contenders dominate over the rest in evolution. The. dynamics of this selection is studied using a simple linear model. It has similarities to features of quantum computation, in particular conservation laws leading to destructive interference. Compared to an altruistic scenario, competition introduces instability and eliminates the weaker species in a finite time.
Resumo:
In graphene, the valleys represent spinlike quantities and can act as a physical resource in valley-based electronics to produce novel quantum computation schemes. Here we demonstrate a direct route to tune and read the valley quantum states of disordered graphene by measuring the mesoscopic conductance fluctuations. We show that the conductance fluctuations in graphene at low temperatures are reduced by a factor of 4 when valley triplet states are gapped in the presence of short-range potential scatterers at high carrier densities. We also show that this implies a gate tunable universal symmetry class that outlines a fundamental feature arising from graphene's unique crystal structure.
Resumo:
Decoherence as an obstacle in quantum computation is viewed as a struggle between two forces [1]: the computation which uses the exponential dimension of Hilbert space, and decoherence which destroys this entanglement by collapse. In this model of decohered quantum computation, a sequential quantum computer loses the battle, because at each time step, only a local operation is carried out but g*(t) number of gates collapse. With quantum circuits computing in parallel way the situation is different- g(t) number of gates can be applied at each time step and number gates collapse because of decoherence. As g(t) ≈ g*(t) competition here is even [1]. Our paper improves on this model by slowing down g*(t) by encoding the circuit in parallel computing architectures and running it in Single Instruction Multiple Data (SIMD) paradigm. We have proposed a parallel ion trap architecture for single-bit rotation of a qubit.
Resumo:
The purpose of life is to obtain knowledge, use it to live with as much satisfaction as possible, and pass it on with improvements and modifications to the next generation.'' This may sound philosophical, and the interpretation of words may be subjective, yet it is fairly clear that this is what all living organisms--from bacteria to human beings--do in their life time. Indeed, this can be adopted as the information theoretic definition of life. Over billions of years, biological evolution has experimented with a wide range of physical systems for acquiring, processing and communicating information. We are now in a position to make the principles behind these systems mathematically precise, and then extend them as far as laws of physics permit. Therein lies the future of computation, of ourselves, and of life.
Resumo:
We construct a quantum random walk algorithm, based on the Dirac operator instead of the Laplacian. The algorithm explores multiple evolutionary branches by superposition of states, and does not require the coin toss instruction of classical randomised algorithms. We use this algorithm to search for a marked vertex on a hypercubic lattice in arbitrary dimensions. Our numerical and analytical results match the scaling behaviour of earlier algorithms that use a coin toss instruction.
Resumo:
The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.
Resumo:
We report on a comprehensive analysis of the renormalization of noncommutative phi(4) scalar field theories on the Groenewold-Moyal plane. These scalar field theories are twisted Poincare invariant. Our main results are that these scalar field theories are renormalizable, free of UV/IR mixing, possess the same fixed points and beta-functions for the couplings as their commutative counterparts. We also argue that similar results hold true for any generic noncommutative field theory with polynomial interactions and involving only pure matter fields. A secondary aim of this work is to provide a comprehensive review of different approaches for the computation of the noncommutative S-matrix: noncommutative interaction picture and noncommutative Lehmann-Symanzik-Zimmermann formalism. DOI: 10.1103/PhysRevD.87.064014