74 resultados para Pyruvate-formate-lyase
em Indian Institute of Science - Bangalore - Índia
Resumo:
In Salmonella typhimurium, propionate is oxidized to pyruvate via the 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (EC 4.1.3.30). Methylisocitrate lyase (molecular weight 32 kDa) with a C-terminal polyhistidine affinity tag has been cloned and overexpressed in Escherichia coli and purified and crystallized under different conditions using the hanging-drop vapour-diffusion technique. Crystals belong to the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 63.600, b = 100.670, c = 204.745 Angstrom. A complete data set to 2.5 Angstrom resolution has been collected using an image-plate detector system mounted on a rotating-anode X-ray generator.
Resumo:
Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of D-and L-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 angstrom resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with DL-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.
Resumo:
Diaminopropionate ammonia lyase (DAPAL) is a pyridoxal-5'phosphate (PLP)-dependent enzyme that catalyzes the conversion of diaminopropionate (DAP) to pyruvate and ammonia and plays an important role in cell metabolism. We have investigated the role of the ygeX gene of Escherichia coli K-12 and its ortholog, STM1002, in Salmonella enterica serovar Typhimurium LT2, presumed to encode DAPAL, in the growth kinetics of the bacteria. While Salmonella Typhimurium LT2 could grow on DL-DAP as a sole carbon source, the wild-type E. coli K-12 strain exhibited only marginal growth on DL-DAP, suggesting that DAPAL is functional in S. Typhimurium. The expression of ygeX in E. coli was low as detected by reverse transcriptase PCR (RT-PCR), consistent with the poor growth of E. coli on DL-DAP. Strains of S. Typhimurium and E. coli with STM1002 and ygeX, respectively, deleted showed loss of growth on DL-DAP, confirming that STM1002 (ygeX) is the locus encoding DAPAL. Interestingly, the presence of DL-DAP caused a growth inhibition of the wild-type E. coli strain as well as the knockout strains of S. Typhimurium and E. coli in minimal glucose/glycerol medium. Inhibition by DL-DAP was rescued by transforming the strains with plasmids containing the STM1002 (ygeX) gene encoding DAPAL or supplementing the medium with Casamino Acids. Growth restoration studies using media lacking specific amino acid supplements suggested that growth inhibition by DL-DAP in the absence of DAPAL is associated with auxotrophy related to the inhibition of the enzymes involved in the biosynthetic pathways of pyruvate and aspartate and the amino acids derived from them.
Resumo:
Cinnamate is the product of phenylalanine ammonialyase (PAL). This compound, a precursor of phenolics in plants, has been shown to be phytotoxic. Cinnamate inhibits PAL activity in cucumber seedlings. DL-phenylalanine has the same effect on the enzyme but does not affect growth. Actinomycin D and cycloheximide are phytotoxic and inhibit PAL. Production of a double-peg has been noticed in the seedlings, grown in the presence of actinomycin D. Light stimulates PAL activity in the seedling.
Resumo:
Abstract is not available.
Resumo:
Phenylalanine ammonia-lyase (EC 4.3.1.5) was purified to homogeneity from the acetone-dried powders of the mycelial felts of the plant pathogenic fungus Rhizoctonia solani. 2. A useful modification in protamine sulphate treatment to get substantial purification of the enzyme in a single-step is described. 3. The purified enzyme shows bisubstrate activity towards L-phenylalanine and L-tyrosine. 4. It is sensitive to carbonyl reagents and the inhibition is not reversed by gel filtration. 5. The molecular weight of the enzyme as determined by Sephadex G-200 chromatography and sucrose-density-gradient centrifugation is around 330000. 6. The enzyme is made up of two pairs of unidentical subunits, with a molecular weight of 70000 (alpha) and 90000 (beta) respectively. 7. Studies on initial velocity versus substrate concentration have shown significant deviations from Michaelis-Menten kinetics. 8. The double-reciprocal plots are biphasic (concave downwards) and Hofstee plots show a curvilinear pattern. 9. The apparent Km value increases from 0.18 mM to as high as 5.0 mM with the increase in the concentration of the substrate and during this process the Vmax, increases by 2-2.5-fold. 10. The value of Hill coefficient is 0.5. 11. Steady-state rates of phenylalanine ammonia-lyase reaction in the presence of inhibitors like D-phenylalanine, cinnamic, p-coumaric, caffeic, dihydrocaffeic and phenylpyruvic acid have shown that only one molecule of each type of inhibitor binds to a molecule of the enzyme. These observations suggest the involvement of negative homotropic interactions in phenylalanine ammonia-lyase. 12. The enzyme could not be desensitized by treatment with HgCl2, p-chloromercuribenzoic acid or by repeated freezing and thawing.
Resumo:
Five isolates degrading and assimilating foramte were isolated from chicken dung. Characterization indicated two differents types. One of these belonged to the genus Alcaligenes and assimilated formate autotrophically. The other four isolates were identical, belongedto hte genus Protaminobacter and assimilated formate heterotrophicaly by the serine pathway.
Resumo:
Thiobacillus novellus was able to grow with oxalate, formate, formamide, and methanol as sole sources of carbon and energy. Extensive growth on methanol required yeast extract or vitamins. Glyoxylate carboligase was detected in extracts of oxalate-grown cells. Ribulose bisphosphate carboxylase was found in extracts of cells grown on formate, formamide, and thiosulfate. These data indicate that oxalate is utilized heterotrophically in the glycerate pathway, and formate and formamide are utilized autotrophically in the ribulose bisphosphate pathway. Nicotinamide adenine dinucleotide-linked formate dehydrogenase was present in extracts of oxalate-, formate-, formamide-, and methanol-grown cells but was absent in thiosulfate- and acetate-grown cells.
Resumo:
Solvothermal treatment of an equimolar mixture of Co(NO3)(2)center dot 6H(2)O, HCONH2 and NaN3 in MeOH at 100 degrees C yielded a three-dimensional NaCl type network Co(HCOO)(2)(HCONH2)(2) center dot HCONH2 (1a) containing formamides in the pores of the structure. Solvated pink 1a undergoes single crystal-to-single crystal (SCSC) transformation at 215 degrees C to form the desolvated dark brown product Co(HCOO)(2)-( HCONH2)(2) (1b) with the retention of the original framework. Reversible single crystal-to-single crystal transformation of 1b (brown) to 1a (pink) in the presence of excess formamide was also established at room temperature. The coordination environment around Co(II) in both 1a and 1b is octahedral with a CoN2O4 coordination composition. A similar reaction replacing Co(II) by Cr(III) produced a heterometallic 3D extended network Na[Cr(HCOO)(4)(HCONH2)(2)]center dot 2H(2)O (2a) at 100 degrees C. An increase in reaction temperature to 150 degrees C produced a simple mononuclear complex Cr(HCOO)(3)(HCONH2)(3) center dot 3H(2)O (2b). Variable temperature magnetic studies revealed the presence of a canting phenomena in both 1a and 1b, and hysteresis loop in the field dependent magnetisation plot at 2 K whereas complex 2a is simply paramagnetic in nature.
Resumo:
The purification and some properties of the enzyme indoleacetaldoxime hydrolyase (EC 4.2.1.29) from the fungus Gibberella fujikuroi, which dehydrates indoleacetaldoxime (IAOX) to indoleacetonitrile (IAN), are described. The enzyme activity in the fungus is present only under certain culture conditions. It is a soluble enzyme, has an optimum pH at 7, shows an energy of activation of —15,670 cal/mole, and has a Michaelis constant of 1.7 × 10−4 Image at 30 °. It appears to be specific for IAOX, and 1 mole of IAN is produced per mole of IAOX utilized. The enzyme is inhibited by a number of aldoximes of which phenylacetaldoxime (PAOX) is the most potent inhibitor. Inhibition by PAOX is competitive (Ki = 2.2 × 10−8 Image ). The enzyme is inhibited by SH reagents such as p-hydroxymercuribenzoate and N-ethylmaleimide, and by a number of SH compounds such as cysteine, β-mercaptoethanol, and 2,3-dimercaptopropanol (BAL). However, glutathione activates the enzyme. Metal chelating agents such as 8-OH-quinoline and diethyl dithiocarbamate inhibit the enzyme; the inhibition is partly reversed by ferric citrate. Ascorbic acid, and particularly dehydroascorbic acid (DHA), are good activators of the enzyme. Several other biological oxidants had either no action or had a slight effect. Potassium cyanide activates the enzyme at low concentration but inhibits at higher concentrations. Reduction of the enzyme with NaBH4 reduces activity, and the effect is partly reversed by pyridoxal phosphate and also by DHA. The above properties indicate that both an SH function and an oxidized function are required for activity.
Resumo:
Formation of C4 dicarboxylic acids in Plasmodium berghei by carbon dioxide fixation reaction has been demonstrated by the use of labeled NaH14CO3. The reactions require glucose, which may be required not only as an energy source but also to contribute to the formation of pyruvate in the process of carbon dioxide fixation. Intracellular concentration of pyruvate may play an important role in the metabolism of P. berghei; an increased intracellular level of pyruvate seems to be a prerequisite before some of these reactions could be detected. The distribution of the label indicates extensive randomization of amino acids and suggests an extensive cycling of the amino acid and organic acid pools of the parasites. This investigation formed part of the thesis submitted in 1965 for the doctoral degree at the Indian Institute of Science, Bangalore 12, India, and was supported in part by the Council of Scientific and Industrial Research, India.
Resumo:
The variations in certain spin-Hamiltonian parameters of the Cu++ ion in dibarium copper formate tetrahydrate with temperature have been studied. Optical absorption investigations on single crystals of the salt at room temperature and 90° K. are reported. The results are discussed in terms of a model in which vibronic mixing of certain electron levels of the Cu++ ion play an important role.
Resumo:
ESR investigations on dilute single crystals of dibarium copper formate tetrahydrate, at room temperature and 90° K. have been described. A general method used for the evaluation of theg-tensor in this triclinic crystal, which contains only one ion in the unit cell, has been discussed. A detailed account of the evaluation of the quadrupole interaction is given. Expressions for the positions of the hyperfine levels of the lowest Kramer’s doublet of the Cu++ ion in the magnetic field have been worked out for the case when B and Q are of similar magnitude.