159 resultados para Pulsating Fluid-flow
em Indian Institute of Science - Bangalore - Índia
Resumo:
A droplet introduced in an external convective flow field exhibits significant multimodal shape oscillations depending upon the intensity of the aerodynamic forcing. In this paper, a theoretical model describing the temporal evolution of normal modes of the droplet shape is developed. The fluid is assumed to be weakly viscous and Newtonian. The convective flow velocity, which is assumed to be incompressible and inviscid, is incorporated in the model through the normal stress condition at the droplet surface and the equation of motion governing the dynamics of each mode is derived. The coupling between the external flow and the droplet is approximated to be a one-way process, i.e., the external flow perturbations effect the droplet shape oscillations and the droplet oscillation itself does not influence the external flow characteristics. The shape oscillations of the droplet with different fluid properties under different unsteady flow fields were simulated. For a pulsatile external flow, the frequency spectra of the normal modes of the droplet revealed a dominant response at the resonant frequency, in addition to the driving frequency and the corresponding harmonics. At driving frequencies sufficiently different from the resonant frequency of the prolate-oblate oscillation mode of the droplet, the oscillations are stable. But at resonance the oscillation amplitude grows in time leading to breakup depending upon the fluid viscosity. A line vortex advecting past the droplet, simulated as an isotropic jump in the far field velocity, leads to the resonant excitation of the droplet shape modes if and only if the time taken by the vortex to cross the droplet is less than the resonant period of the P-2 mode of the droplet. A train of two vortices interacting with the droplet is also analysed. It shows clearly that the time instant of introduction of the second vortex with respect to the droplet shape oscillation cycle is crucial in determining the amplitude of oscillation. (C) 2014 AIP Publishing LLC.
Resumo:
Micropolar fluid flow over a semi-infinite flat plate has been described by using the parabolic co-ordinates and the method of series truncation in order to study the flow for low to large Reynolds numbers. These co-ordinates permit to study the flow regime at the leading edge. Numerical results have been presented for different Reynolds numbers. Results show a reduction in skin friction.
Resumo:
The equations governing the flow of a steady rotating incompressible viscous fluid are expressed in intrinsic form along the vortex lines and their normals. Using these equations the effects of rotation on the geometric properties of viscous fluid flows are studied. A particular flow in which the vortex lines are right circular helices is discussed.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The fluid-flow pattern and residence-time distribution (r.t.d.) of the fluid in a continuous casting mould have been studied using a water model. The two recirculating zones below the discharge ports have been found to be asymmetric. The effect of casting speed, discharge port diameter, shroud well depth and the immersion depth on r.t.d. have been investigated. The r.t.d. curve has been well represented by a model of two backmix cells of equal volume in series. The exist of the fluid has been found to be non-uniform across the cross-section of the mould. The fluid-flow pattern has been observed to change with time in a random fashion. Dead volume of upto 31.8% has been found with smaller discharge ports.
Resumo:
Amongv arioums ethodtsh,e t ransmissliionne o r thei mpedantcueb em ethohda sb eenm ospt opulafro r thee xperimenetavla luatioonf thea cousticiaml pedanocef a terminatioTnh. ee xistinmg ethodisn,c luding theo nesre porteeda rlierb, y thea uthorrse quirleo catioonf thes oundp ressumrei nima nd/orm axima, or elsem akeu se0 f somei terativep rocedureTsh. e presenpt aperd ealsw ith a methodo f analysios f standinwga vews hichd oesn otd epenodn anyo f thesein volvepdr ocedureIts i.s applicabtloe thec aseo f stationarays w ella sm ovingm ediaI.t enableosn to evaluatteh e impedancoef anyp assivbel ackb ox,a s well as the aeroacoustcich aracteristicosf a sourceo f pulsatingg asf low, with the leaste xperimentawl ork andc omputatiotinm ea ndw itht hee xtraa dvantagoef usinga givenim pedanctueb ef or wavelengtahss largea s fourt imesit s lengthA. methodo f externaml easuremenntost, involvinugs eo f anyi mpedance tubef, or evaluatintgh ea eroacouscthica racteristoicf as sourcoef pulsatingga sf lowi s alsod ealtw ith, based on the definition of attenuation or insertion loss of a muffler.
Resumo:
The stability of fluid flow past a membrane of infinitesimal thickness is analysed in the limit of zero Reynolds number using linear and weakly nonlinear analyses. The system consists of two Newtonian fluids of thickness R* and H R*, separated by an infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics of the membrane is described by its normal displacement from the flat state, as well as a surface displacement field which provides the displacement of material points from their steady-state positions due to the tangential stress exerted by the fluid flow. The surface stress in the membrane (force per unit length) contains an elastic component proportional to the strain along the surface of the membrane, and a viscous component proportional to the strain rate. The linear analysis reveals that the fluctuations become unstable in the long-wave (alpha --> 0) limit when the non-dimensional strain rate in the fluid exceeds a critical value Lambda(t), and this critical value increases proportional to alpha(2) in this limit. Here, alpha is the dimensionless wavenumber of the perturbations scaled by the inverse of the fluid thickness R*(-1), and the dimensionless strain rate is given by Lambda(t) = ((gamma) over dot* R*eta*/Gamma*), where eta* is the fluid viscosity, Gamma* is the tension of the membrane and (gamma) over dot* is the strain rate in the fluid. The weakly nonlinear stability analysis shows that perturbations are supercritically stable in the alpha --> 0 limit.
Resumo:
CFD investigations are carried out to study the heat flux and temperature distribution in the calandria using a 3–Dimensional RANS code. Internal flow computations and experimental studies are carried out for a calandria embedded with a matrix of tubes working together as a reactor. Numerical investigations are carried on the Calandria reactor vessel with horizontal inlets and outlets located on top and the bottom to study the flow pattern and the associated temperature distribution. The computations have been carried out to simulate fluid flow and convective heat transfer for assigned near–to working conditions with different moderator injection rates and reacting heat fluxes. The results of computations provide an estimate of the tolerance bands for safe working limits for the heat dissipation at different working conditions by virtue of prediction of the hot spots in the calandria. The isothermal CFD results are validated by a set of experiments on a specially designed scaled model conducted over a range of flows and simulation parameters. The comparison of CFD results with experiments show good agreement.
Resumo:
In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.
Resumo:
Many boundary value problems occur in a natural way while studying fluid flow problems in a channel. The solutions of two such boundary value problems are obtained and analysed in the context of flow problems involving three layers of fluids of different constant densities in a channel, associated with an impermeable bottom that has a small undulation. The top surface of the channel is either bounded by a rigid lid or free to the atmosphere. The fluid in each layer is assumed to be inviscid and incompressible, and the flow is irrotational and two-dimensional. Only waves that are stationary with respect to the bottom profile are considered in this paper. The effect of surface tension is neglected. In the process of obtaining solutions for both the problems, regular perturbation analysis along with a Fourier transform technique is employed to derive the first-order corrections of some important physical quantities. Two types of bottom topography, such as concave and convex, are considered to derive the profiles of the interfaces. We observe that the profiles are oscillatory in nature, representing waves of variable amplitude with distinct wave numbers propagating downstream and with no wave upstream. The observations are presented in tabular and graphical forms.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube