22 resultados para Pulsars: individual (SGR 0418 5729)
em Indian Institute of Science - Bangalore - Índia
Resumo:
1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.
Resumo:
A rapid and sensitive method is described to quantitatively compare tRNA pools for individual aminoacids in a single experiment. The procedure comprises of: (i) charging of total tRNA with a mixture of radiolabeled aminoacids, (ii) deacylation of the esterified tRNA with a volatile base and the recovery of the labeled aminoacid, (iii) derivatisation of the aminoacid with phenylisothiocyanate after mixing with excess of nonradioactive aminoacids, (iv) baseline separation of the phenylthiocarbamyl aminoacids by reverse phase high performance liquid chromatography monitored by A254nm and (v) quantitation of the radioactivity in individual aminoacid peaks. The radioactivity in the aminoacid peak corresponds to the quantity of the aminoacylated tRNA. The method has been successfully applied to quantitate the individual tRNA pools in the developing silk glands of Bombyx mori, a functionally adapted tissue which undergoes considerable variations in tRNA content. PSG, posterior silk gland; PITC, phenylisothiocyanate; DMAA, N,N-dimethyl-N-allylamine; APH, algal protein hydrolysate; ptc-, phenylthiocarbamyl; HPLC, high performance liquid chromatography.
Resumo:
Racemic gossypol has been resolved by HPLC separation of diastereomeric (−) norepinephrine adducts on a reverse-phase column. The binding constants for the interaction of the three gossypol forms (+, − and −) with human and bovine serum albumins have been determined by fluoresence quenching studies. The KD values demonstrate that all three forms bind equally effectively to the two proteins, suggesting an absence of chiral discrimination in albumin-gossypol interactions. Circular dichroism studies of (+)-gossypol binding to the model dibasic peptides, Boc-Lys-Pro-Aib-Lys-NHMe and gramicidin S, suggesting that distortions of binaphthyl geometry may occur only for specific orientations of interacting residues at the receptor site.
Resumo:
In the studies reported so far on dendrimer-mediated catalysis, the efficacies of the catalytic units were studied and compared primarily across the generations. In order to identify the efficacy of an individual catalytic unit with respect to the number of such units present within a given generation, a series of catalysts were prepared within a generation. Dendrimers incorporated with phosphinemetal complexes were chosen for the study and as many as 11 catalysts within three generations were synthesized. The C-C bond-forming reactions, namely, the Heck and the Suzuki coupling reactions, were then selected to study the catalytic efficiencies of the series of partially and fully phosphine-metal complex functionalized dendrimers. The efficacies of the formation of cinnamate and biphenyl. catalyzed by the dendritic catalysts, were compared. The comparative analyses show that an individual catalytic site is far more effective in its catalytic activity when presented in multiple numbers, i.e., in a multivalent dendritic system, than as a single unit within the same generation, i.e., in a monovalent dendritic system. The study identifies the beneficial effects of the multivalent presentation of the catalytic moieties, both within and across the dendrimer generations.
Resumo:
High mass X-ray binary (HMXB) pulsars are of two types, persistent and transient. 4U1538-52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution. Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA.
Resumo:
High mass X-ray binary (H M X B) pulsars are of two types, persistent and transient. 4U 1538-52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution. Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA.
Resumo:
The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
Resumo:
Adult male Nilgiri langurs (Presbytis johnii) utter loud call bouts consisting of one or more phrases. Phrases are made up of several units showing similar or different structural features. The units involved differ with respect to not only their physical structure but also their overall utilization: three vocal patterns are uttered exclusively by mature males living in bisexual groups or all-male bands and, in addition to being part of loud call bouts, are given during encounters with terrestrial predators; two vocal patterns are uttered by males and females, again not just as constituents of loud calls; and one vocal pattern is given exclusively by mature males living in bisexual groups. Within a given bout, phrases differ not only with respect to their composition but also in their temporal organization. In addition to the acoustic components, loud calls are regularly accompanied by stereotyped motoric displays. The motoric and acoustic components of loud call displays appear independently of each other and at different times during ontogeny. The development of the display is characterized by combination of units with different structural features and synchronization of vocal and motoric components. Although more evidence is needed, our observations suggest that the development of loud call displays coincides with the aquisitation of social maturation and competence and requires not only social experience but also a certain amount of motoric training. In spite of the high degree of ritualization, loud call displays are not completely fixed in form, but instead are open to individual- and population-specific variation.
Resumo:
It is well known that dark matter dominates the dynamics of galaxies and clusters of galaxies. Its constituents remain a mystery despite an assiduous search for them over the past three decades. Recent results from the satellite-based PAMELA experiment show an excess in the positron fraction at energies between 10 and 100 GeV in the secondary cosmic ray spectrum. Other experiments, namely ATIC, HESS and FERMI, show an excess in the total electron (e(+) + e(-)) spectrum for energies greater than 100 GeV. These excesses in the positron fraction as well as the electron spectrum can arise in local astrophysical processes like pulsars, or can be attributed to the annihilation of the dark matter particles. The latter possibility gives clues to the possible candidates for the dark matter in galaxies and other astrophysical systems. In this article, we give a report of these exciting developments.
Resumo:
We explore the consequences of the model of spin-down-induced flux expulsion for the magnetic field evolution in solitary as well as in binary neutron stars. The spin evolution of pulsars, allowing for their field evolution according to this model, is shown to be consistent with the existing observational constraints in both low- and high-mass X-ray binary systems. The contribution from pulsars recycled in massive binaries to the observed excess in the number of low-field (10(11)-10(12) G) solitary pulsars is argued to be negligible in comparison with that of normal pulsars undergoing a 'restricted' field decay predicted by the adopted field decay model. Magnetic fields of neutron stars born in close binaries with intermediate- or high-mass main-sequence companions are predicted to decay down to values as low as similar to 10(6) G, which would leave them unobservable as pulsars during most of their lifetimes. The post-recycling evolution of some of these systems can, however, account for the observed binary pulsars having neutron star or massive white dwarf companions. Pulsars recycled in the disc population low-mass binaries are expected to have residual fields greater than or similar to 10(8) G, while for those processed in globular clusters larger residual fields are predicted because of the lower field strength of the neutron star at the epoch of binary formation. A value of tau similar to 1-2 x 10(7) yr for the mean value of the Ohmic decay time-scale in the crusts of neutron stars is suggested, based on the consistency of the model predictions with the observed distribution of periods and magnetic fields in the single and binary pulsars.