47 resultados para Pseudomonas
em Indian Institute of Science - Bangalore - Índia
Resumo:
Metabolism of linalyl acetate by Pseudomonas incognita isolated by enrichment culture on the acyclic monoterpene alcohol linalool was studied. Biodegradation of linalyl acetate by this strain resulted in the formation of linalool, linalool- 8-carboxylic acid, oleuropeic acid, and A5-4-acetoxy-4-methyl hexenoic acid. Cells adapted to linalyl acetate metabolized linalyl acetate-8-aldehyde to linalool- 8-carboxylic acid, linalyl acetate-8-carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and geraniol-8-carboxylic acid. Resting cell suspensions previously grown with linalyl acetate oxidized linalyl acetate-8-aldehyde to linalyl acetate-8- carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and pyruvic acid. The crude cell-free extract (10,000 g of supernatant), obtained from the sonicate of linalyl acetate-grown cells, was shown to contain enzyme systems responsible for the formation of linalyl acetate-8-carboxylic acid and linalool-8-carboxylic acid from linalyl acetate. The same supernatant contained NAD-linked alcohol and aldehyde dehydrogenases involved in the formation of linalyl acetate-8-aldehyde and linalyl acetate-8-carboxylic acid, respectively. On the basis of various metabolites isolated from the culture medium, resting cell experiments, growth and manometric studies carried out with the isolated metabolites as well as related synthetic analogs, and the preliminary enzymatic studies performed with the cellfree extract, a probable pathway for the microbial degradation of linalyl acetate with the acetoxy group intact is suggested.
Resumo:
A copper-binding complex formed in the exopolysaccharide fraction of Image was isolated and characterized using a variety of techniques. By comparison with model Cu(II) complexes of uronic acids, it is shown that the Image forms a square-planer, cupric complex similar to cupric glucuronates.
Resumo:
Details of the metabolism of alpha-terpineol by Pseudomonas incognita are presented. Degradation of alpha-terpineol by this organism resulted in the formation of a number of acidic and neutral metabolites. Among the acidic metabolites, beta-isopropyl pimelic acid, 1-hydroxy-4-isopropenyl-cyclohexane-1-carboxylic acid, 8-hydroxycumic acid, oleuropeic acid, cumic acid, and p-isopropenyl benzoic acid have been identified. Neutral metabolites identified were limonene, p-cymene-8-ol, 2-hydroxycineole, and uroterpenol. Cell-free extracts prepared from alpha-terpineol adapted cells were shown to convert alpha-terpineol, p-cymene-8-ol, and limonene to oleuropeic acid, 8-hydroxycumic acid, and perillic acid, respectively, in the presence of NADH. The same cell-free extract contained NAD+ -specific dehydrogenase(s) which converted oleuropyl alcohol, p-cymene-7,8-diol, and perillyl alcohol to their corresponding 7-carboxy acids. On the basis of various metabolites isolated from the culture medium, together with the supporting evidence obtained from enzymatic and growth studies, it appears that P. incognita degrades alpha-terpineol by at least three different routes. While one of the pathways seems to operate via oleuropeic acid, a second may be initiated through the aromatization of alpha-terpineol. The third pathway may involve the formation of limonene from alpha-terpineol and its further metabolism.
Resumo:
The ability of Pseudomonas incognita to metabolize some structurally modified acyclic monoterpenes was tested. The 6,7 double bond was found essential for these compounds to serve as a substrate for this organism, whereas the same was not true with the 1,2 double bond. Metabolism of dihydrolinalyl acetate by this strain yielded dihydrolinalool, dihydrolinalool-8-carboxylic acid, dihydrolinalyl acetate-8-carboxylic acid, and 4-acetoxy-4-methyl hexanoic acid. A cell-free extract prepared from dihydrolinalyl acetate grown cells transformed dihydrolinalyl acetate into dihydrolinalool and dihydrolinalool-8-carboxylic acid. Based on the identification of various metabolites isolated from the culture medium, and on growth and manometric studies carried out with the isolated metabolites as well as with related synthetic analogs, probable pathways for the biodegradation of dihydrolinalyl acetate are presented.
Resumo:
Analysis of 35S labled nucleosides prepared from tRNA of Pseudomonas aeruginosa by phosphocellulose column chromatography, thin layer chromatography and Sephadex LH-20 column chromatography revealed the presence of 2-methylthioribosylzeatin in it. 2iPA, 6-(3-methyl-2-butenylamino)-9-β-D-ribofuranosyl purine; ms-2iPA, 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9-β-D-ribofuranosylpurine; ribosyl-trans-zeatin, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-9-β-D-ribofuranosylpurine; ms-ribosylzeatin, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; s4U2, 4-thiouridine; s2U*, 5-methylaminomethyl-2-thiouridine; s2C, 2-thiocytidine; TLC — thin layer chromatography.
Resumo:
35S-Labeled thionucleosides prepared from Escherichia coli and Pseudomonas aeruginosa tRNAs were chromatographed separately on a phosphocellulose column with a linear salt gradient of 0.005–0.1 M ammonium formate (pH 3.9). The thionucleosides of E. coli tRNA were quantitatively separated into four peaks which were identified using authentic samples as 4-thiouridine (78 %), 2-methylthio-N6-isopentenyladenosine (8 %), 2-thiocytidine (2.5 %) and 5-methylaminomethyl-2-thiouridine (11.5 %). In the case of P. aeruginosa tRNA four radioactive thionucleoside peaks were also observed. One major difference was the almost complete absence of 2-methylthio-N6-isopentenyladenosine and the presence of a new peak of radioactivity in the nucleosides of P. aeruginosa. The relative proportions of the various thionucleosides were found to be different in E. coli and P. aeruginosa tRNAs.
Resumo:
Analysis of 35S labled nucleosides prepared from tRNA of Pseudomonas aeruginosa by phosphocellulose column chromatography, thin layer chromatography and Sephadex LH-20 column chromatography revealed the presence of 2-methylthioribosylzeatin in it. 2iPA, 6-(3-methyl-2-butenylamino)-9-β-D-ribofuranosyl purine; ms-2iPA, 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9-β-D-ribofuranosylpurine; ribosyl-trans-zeatin, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-9-β-D-ribofuranosylpurine; ms-ribosylzeatin, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; s4U2, 4-thiouridine; s2U*, 5-methylaminomethyl-2-thiouridine; s2C, 2-thiocytidine; TLC — thin layer chromatography.
Resumo:
Pseudomonas aeruginosa tRNA was treated with iodine, CNBr and N-ethylmaleimide,three thionucleotide-specific reagents. Reaction with iodine resulted in extensive loss of acceptor activity by lysine tRNA, glutamic acid tRNA, glutamine tRNA, serine tRNA and tyrosine tRNA. CNBr treatment resulted in high loss of acceptor ability by lysine tRNA, glutamic acid tRNA and glutamine tRNA. Only the acceptor ability of tyrosine tRNA was inhibited up to 66% by N-ethylmaleimide treatment, a reagent specific for 4-thiouridine. By the combined use of benzoylated DEAE-cellulose and DEAESephadex columns, lysine tRNA of Ps. aeruginosa was resolved into two isoaccepting species, a major, tRNAL'y and a minor, tRNA'Ys. Co-chromatography of 14C-labelled tRNALYS and 3H-labelled tRNALy, on benzoylated DEAE-cellulose at pH4.5 gave two distinct, non-superimposable profiles for the two activity peaks, suggesting that they were separate species. The acceptor activity of these two species was inhibited by about 95% by iodine and CNBr. Both the species showed equal response to codons AAA and AAG and also for poly(A) and poly(A1,Gl) suggesting that the anticodon of these species was UUU. Chemical modification of these two species by iodine did not inhibit the coding response. The two species of lysine of Ps. aeruginosa are truly redundant in that they are indistinguishable either by chemical modification or by their coding response.
Resumo:
An inducible membrane-bound l-4-hydroxymandelate oxidase (decarboxylating) from Pseudomonas convexa has been solubilized and partially purified. It catalyzes the conversion of l-4-hydroxymandelic acid to 4-hydroxybenzaldehyde in a single step with the stoichiometric consumption of O2 and liberation of CO2. The enzyme is optimally active at pH 6.6 and at 55 oC. It requires FAD and Mn2+ for its activity. The membrane-bound enzyme is more stable than the solubilized and purified enzyme. After solubilization it gradually loses its activity when kept at 5 oC which can be fully reactivated by freezing and thawing. The Km values for DL-4-hydroxymandelate and FAD are 0.44 mM and 0.038 mM respectively. The enzyme is highly specific for DL-4-hydroxymandelic acid. DL-3,4-Dihydroxymandelic acid competitively inhibited the enzyme reaction. From the Dixon plot the Ki for DL-3,4-dihydroxymandelic acid was calculated to be 1.8 × 10−4 M. The enzyme is completely inactivated by thiol compounds and not affected by thiol inhibitors. The enzyme is also inhibited by denaturing agents, heavy metal ions and by chelating agents.
Resumo:
An inducible Image -mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of Image -mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with Image -mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10−4, 1.9 × 10−4, and 4.7 × 10−5 Image , respectively. The enzyme is very specific for Image -mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.
Resumo:
A soluble fraction of catalyzed the hydroxylation of mandelic acid to -hydroxymandelic acid. The enzyme had a pH optimum of 5.4 and showed an absolute requirement for Fe2+, tetrahydropteridine, NADPH. -Hydroxymandelate, the product of the enzyme reaction was identified by paper chromatography, thin layer chromatography, UV and IR-spectra
Resumo:
4-Hydroxyphenylacetic acid 3-hydroxylase is a key enzyme in the pathway for the microbial degradation of phenylalanine, tyrosine and many aromatic amines. This enzyme was purified to homogeneity from Image by affinity chromatography. The protein had a molecular weight of 91,000 and was a dimer of identical subunits. It was a typical external flavoprotein monooxygenase and showed an absolute requirement of NADH for activity. The enzyme had a pH optimum of 7.5 and the Km values for 4-hydroxyphenylacetic acid and NADH were 2×10−4 M and 5.9×10−5 M respectively. It was strongly inhibited by heavy metal ions and thiol reagents, suggesting the possible involvement of -SH group(s) in enzyme reaction.
Resumo:
2,4-Dichlorophenol hydroxylase, a flavoprotein monooxygenase from Pseudomonas cepacia grown on 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, was purified to homogeneity by a single-step affinity chromatography on 2,4-DCP-Sepharose CL-4B. The enzyme was eluted from the affinity matrix with the substrate 2,4-dichlorophenol. The enzyme has a molecular weight of 275,000 consisting of four identical subunits of molecular weight 69,000 and requires exogenous addition of FAD for its complete catalytic activity. The enzyme required an external electron donor NADPH for hydroxylation of 2,4-dichlorophenol to 3,5-dicholorocatechol. NADPH was preferred over NADH. The enzyme had Km value of 14 μImage for 2,4-dichlorophenol, and 100 μImage for NADPH. The enzyme activity was significantly inhibited by heavy metal ions like Hg2+ and Zn2+ and showed marked inhibition with thiol reagents. Trichlorophenols inhibited the enzyme competitively. The hydroxylase activity decreased as a function of increasing concentrations of Cibacron blue and Procion red dyes. The apoenzyme prepared showed complete loss of FAD when monitored spectrophotometrically and had no enzymatic activity. The inactive apoenzyme was reconstituted with exogenous FAD which completely restored the enzyme activity.
Resumo:
An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.