286 resultados para Protein Structure, Tertiary
em Indian Institute of Science - Bangalore - Índia
Resumo:
The genomic sequences of several RNA plant viruses including cucumber mosaic virus, brome mosaic virus, alfalfa mosaic virus and tobacco mosaic virus have become available recently. The former two viruses are icosahedral while the latter two are bullet and rod shaped, respectively in particle morphology. The non-structural 3a proteins of cucumber mosaic virus and brome mosaic virus have an amino acid sequence homology of 35% and hence are evolutionarily related. In contrast, the coat proteins exhibit little homology, although the circular dichroism spectrum of these viruses are similar. The non-coding regions of the genome also exhibit variable but extensive homology. Comparison of the brome mosaic virus and alfalfa mosaic virus sequences reveals that they are probably related although with a much larger evolutionary distance. The polypeptide folds of the coat protein of three biologically distinct isometric plant viruses, tomato bushy stunt virus, southern bean mosaic virus and satellite tobacco necrosis virus have been shown to display a striking resemblance. All of them consist of a topologically similar 8-standard β-barrel. The implications of these studies to the understanding of the evolution of plant viruses will be discussed.
Resumo:
Communication within and across proteins is crucial for the biological functioning of proteins. Experiments such as mutational studies on proteins provide important information on the amino acids, which are crucial for their function. However, the protein structures are complex and it is unlikely that the entire responsibility of the function rests on only a few amino acids. A large fraction of the protein is expected to participate in its function at some level or other. Thus, it is relevant to consider the protein structures as a completely connected network and then deduce the properties, which are related to the global network features. In this direction, our laboratory has been engaged in representing the protein structure as a network of non-covalent connections and we have investigated a variety of problems in structural biology, such as the identification of functional and folding clusters, determinants of quaternary association and characterization of the network properties of protein structures. We have also addressed a few important issues related to protein dynamics, such as the process of oligomerization in multimers, mechanism on protein folding, and ligand induced communications (allosteric effect). In this review we highlight some of the investigations which we have carried out in the recent past. A review on protein structure graphs was presented earlier, in which the focus was on the graphs and graph spectral properties and their implementation in the study of protein structure graphs/networks (PSN). In this article, we briefly summarize the relevant parts of the methodology and the focus is on the advancement brought out in the understanding of protein structure-function relationships through structure networks. The investigations of structural/biological problems are divided into two parts, in which the first part deals with the analysis of PSNs based on static structures obtained from x-ray crystallography. The second part highlights the changes in the network, associated with biological functions, which are deduced from the network analysis on the structures obtained from molecular dynamics simulations.
Resumo:
tRNA synthetases (aaRS) are enzymes crucial in the translation of genetic code. The enzyme accylates the acceptor stem of tRNA by the congnate amino acid bound at the active site, when the anti-codon is recognized by the anti-codon site of aaRS. In a typical aaRS, the distance between the anti-codon region and the amino accylation site is approximately 70 Å. We have investigated this allosteric phenomenon at molecular level by MD simulations followed by the analysis of protein structure networks (PSN) of non-covalent interactions. Specifically, we have generated conformational ensembles by performing MD simulations on different liganded states of methionyl tRNA synthetase (MetRS) from Escherichia coli and tryptophenyl tRNA synthetase (TrpRS) from Human. The correlated residues during the MD simulations are identified by cross correlation maps. We have identified the amino acids connecting the correlated residues by the shortest path between the two selected members of the PSN. The frequencies of paths have been evaluated from the MD snapshots[1]. The conformational populations in different liganded states of the protein have been beautifully captured in terms of network parameters such as hubs, cliques and communities[2]. These parameters have been associated with the rigidity and plasticity of the protein conformations and can be associated with free energy landscape. A comparison of allosteric communication in MetRS and TrpRS [3] elucidated in this study highlights diverse means adopted by different enzymes to perform a similar function. The computational method described for these two enzymes can be applied to the investigation of allostery in other systems.
Resumo:
Underlying the unique structures and diverse functions of proteins area vast range of amino-acid sequences and a highly limited number of folds taken up by the polypeptide backbone. By investigating the role of noncovalent connections at the backbone level and at the detailed side-chain level, we show that these unique structures emerge from interplay between random and selected features. Primarily, the protein structure network formed by these connections shows simple (bond) and higher order (clique) percolation behavior distinctly reminiscent of random network models. However, the clique percolation specific to the side-chain interaction network bears signatures unique to proteins characterized by a larger degree of connectivity than in random networks. These studies reflect some salient features of the manner in which amino acid sequences select the unique structure of proteins from the pool of a limited number of available folds.
Resumo:
Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.
Resumo:
The torsional potential functions Vt(phi) and Vt(psi) around single bonds N--C alpha and C alpha--C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (phi, psi)-plane with the value of Vtot(phi, psi), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in L-configuration, are Vt(phi) = 1.0 cos (phi + 60 degrees); Vt(psi) = 0.5 cos (psi + 60 degrees) - 1.0 cos (2 psi + 30 degrees) - 0.5 cos (3 psi + 30 degrees). The dipeptide energy maps Vtot(phi, psi) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line psi = 0 degrees. These functions derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
The three dimensional structure of a protein is formed and maintained by the noncovalent interactions among the amino acid residues of the polypeptide chain These interactions can be represented collectively in the form of a network So far such networks have been investigated by considering the connections based on distances between the amino acid residues Here we present a method of constructing the structure network based on interaction energies among the amino acid residues in the protein We have investigated the properties of such protein energy based networks (PENs) and have shown correlations to protein structural features such as the clusters of residues involved in stability formation of secondary and super secondary structural units Further we demonstrate that the analysis of PENs in terms of parameters such as hubs and shortest paths can provide a variety of biologically important information such as the residues crucial for stabilizing the folded units and the paths of communication between distal residues in the protein Finally the energy regimes for different levels of stabilization in the protein structure have clearly emerged from the PEN analysis
Resumo:
With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman-Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of similar to 88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA(+) in > 80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient `sequence-based' structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/.
Resumo:
The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBS) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Structural alignments are the most widely used tools for comparing proteins with low sequence similarity. The main contribution of this paper is to derive various kernels on proteins from structural alignments, which do not use sequence information. Central to the kernels is a novel alignment algorithm which matches substructures of fixed size using spectral graph matching techniques. We derive positive semi-definite kernels which capture the notion of similarity between substructures. Using these as base more sophisticated kernels on protein structures are proposed. To empirically evaluate the kernels we used a 40% sequence non-redundant structures from 15 different SCOP superfamilies. The kernels when used with SVMs show competitive performance with CE, a state of the art structure comparison program.
Resumo:
Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of 2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.
Resumo:
The increasing number of available protein structures requires efficient tools for multiple structure comparison. Indeed, multiple structural alignments are essential for the analysis of function, evolution and architecture of protein structures. For this purpose, we proposed a new web server called multiple Protein Block Alignment (mulPBA). This server implements a method based on a structural alphabet to describe the backbone conformation of a protein chain in terms of dihedral angles. This sequence-like' representation enables the use of powerful sequence alignment methods for primary structure comparison, followed by an iterative refinement of the structural superposition. This approach yields alignments superior to most of the rigid-body alignment methods and highly comparable with the flexible structure comparison approaches. We implement this method in a web server designed to do multiple structure superimpositions from a set of structures given by the user. Outputs are given as both sequence alignment and superposed 3D structures visualized directly by static images generated by PyMol or through a Jmol applet allowing dynamic interaction. Multiple global quality measures are given. Relatedness between structures is indicated by a distance dendogram. Superimposed structures in PDB format can be also downloaded, and the results are quickly obtained. mulPBA server can be accessed at www.dsimb.inserm.fr/dsimb_tools/mulpba/.
Resumo:
An online computing server, Online_DPI (where DPI denotes the diffraction precision index), has been created to calculate the `Cruickshank DPI' value for a given three-dimensional protein or macromolecular structure. It also estimates the atomic coordinate error for all the atoms available in the structure. It is an easy-to-use web server that enables users to visualize the computed values dynamically on the client machine. Users can provide the Protein Data Bank (PDB) identification code or upload the three-dimensional atomic coordinates from the client machine. The computed DPI value for the structure and the atomic coordinate errors for all the atoms are included in the revised PDB file. Further, users can graphically view the atomic coordinate error along with `temperature factors' (i.e. atomic displacement parameters). In addition, the computing engine is interfaced with an up-to-date local copy of the Protein Data Bank. New entries are updated every week, and thus users can access all the structures available in the Protein Data Bank. The computing engine is freely accessible online at http://cluster.physics.iisc.ernet.in/dpi/.
Resumo:
Network theory has become an excellent method of choice through which biological data are smoothly integrated to gain insights into complex biological problems. Understanding protein structure, folding, and function has been an important problem, which is being extensively investigated by the network approach. Since the sequence uniquely determines the structure, this review focuses on the networks of non-covalently connected amino acid side chains in proteins. Questions in structural biology are addressed within the framework of such a formalism. While general applications are mentioned in this review, challenging problems which have demanded the attention of scientific community for a long time, such as allostery and protein folding, are considered in greater detail. Our aim has been to explore these important problems through the eyes of networks. Various methods of constructing protein structure networks (PSN) are consolidated. They include the methods based on geometry, edges weighted by different schemes, and also bipartite network of protein-nucleic acid complexes. A number of network metrics that elegantly capture the general features as well as specific features related to phenomena, such as allostery and protein model validation, are described. Additionally, an integration of network theory with ensembles of equilibrium structures of a single protein or that of a large number of structures from the data bank has been presented to perceive complex phenomena from network perspective. Finally, we discuss briefly the capabilities, limitations, and the scope for further explorations of protein structure networks.