543 resultados para Protein Denaturation

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review the current status of various aspects of biopolymer translocation through nanopores and the challenges and opportunities it offers. Much of the interest generated by nanopores arises from their potential application to third-generation cheap and fast genome sequencing. Although the ultimate goal of single-nucleotide identification has not yet been reached, great advances have been made both from a fundamental and an applied point of view, particularly in controlling the translocation time, fabricating various kinds of synthetic pores or genetically engineering protein nanopores with tailored properties, and in devising methods (used separately or in combination) aimed at discriminating nucleotides based either on ionic or transverse electron currents, optical readout signatures, or on the capabilities of the cellular machinery. Recently, exciting new applications have emerged, for the detection of specific proteins and toxins (stochastic biosensors), and for the study of protein folding pathways and binding constants of protein-protein and protein-DNA complexes. The combined use of nanopores and advanced micromanipulation techniques involving optical/magnetic tweezers with high spatial resolution offers unique opportunities for improving the basic understanding of the physical behavior of biomolecules in confined geometries, with implications for the control of crucial biological processes such as protein import and protein denaturation. We highlight the key works in these areas along with future prospects. Finally, we review theoretical and simulation studies aimed at improving fundamental understanding of the complex microscopic mechanisms involved in the translocation process. Such understanding is a pre-requisite to fruitful application of nanopore technology in high-throughput devices for molecular biomedical diagnostics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nucleic acid binding properties of the testis protein, TP, were studied with the help of physical techniques, namely, fluorescence quenching, UV difference absorption spectroscopy, and thermal melting. Results of quenching of tyrosine fluorescence of TP upon its binding to double-stranded and denatured rat liver nucleosome core DNA and poly(rA) suggest that the tyrosine residues of TP interact/intercalate with the bases of these nucleic acids. From the fluorescence quenching data, obtained at 50 mM NaCl concentration, the apparent association constants for binding of TP to native and denatured DNA and poly(rA) were calculated to be 4.4 X 10(3) M-1, 2.86 X 10(4) M-1, and 8.5 X 10(4) M-1, respectively. UV difference absorption spectra upon TP binding to poly(rA) and rat liver core DNA showed a TP-induced hyperchromicity at 260 nm which is suggestive of local melting of poly(rA) and DNA. The results from thermal melting studies of binding of TP to calf thymus DNA at 1 mM NaCl as well as 50 mM NaCl showed that although at 1 mM NaCl TP brings about a slight stabilization of the DNA against thermal melting, a destabilization of the DNA was observed at 50 mM NaCl. From these results it is concluded that TP, having a higher affinity for single-stranded nucleic acids, destabilizes double- stranded DNA, thus behaving like a DNA-melting protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whether proteins denature in all-or-none fashion or in a continuous fashion is as yet an unresolved problem. The all-or-none process implies that while the process of denaturation is going on, only two kinds of protein molecules can exist. One is completely unchanged and the other is altered. The altered protein molecules are indistinguishable. Underlying the 'continuum' models is the assumption that all the chains in a protein globule undergo similar changes so that it is enough to consider a single chain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whether proteins denature in all-or-none fashion or in a continuous fashion is as yet an unresolved problem. The all-or-none process implies that while the process of denaturation is going on, only two kinds of protein molecules can exist. One is completely unchanged and the other is altered. The altered protein molecules are indistinguishable. Underlying the 'continuum' models is the assumption that all the chains in a protein globule undergo similar changes so that it is enough to consider a single chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformational stability of the homodimeric pea lectin was determined by both isothermal urea-induced and thermal denaturation in the absence and presence of urea. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with the unfolding of the protein. The data not only conform to the simple A(2) double left right arrow 2U model of unfolding but also are well described by the linear extrapolation model for the nature of denaturant-protein interactions. In addition, both the conformational stability (Delta G(s)) and the Delta C-p for the protein unfolding is quite high, at about 18.79 kcal/ mol and 5.32 kcal/(mol K), respectively, which may be a reflection of the relatively larger size of the dimeric molecule (M-r 49 000) and, perhaps, a consequent larger buried hydrophobic core in the folded protein. The simple two-state (A(2) double left right arrow 2U) nature of the unfolding process, with the absence of any monomeric intermediate, suggests that the quaternary interactions alone may contribute significantly to the conformational stability of the oligomer-a point that may be general to many oligomeric proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferrocene-conjugated ternary copper(II) complexes [Cu(L)(B)](ClO4)(2), where L is FcCH(2)N(CH2Py)(2) (Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5)) and B is a phenanthroline base, viz., 2,2'-bipyridine (bpy, 1), 1, 10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), have been synthesized and characterized by various spectroscopic and analytical techniques. The bpy complex 1, as its hexafluorophosphate salt, has been structurally characterized by X-ray crystallography. The molecular structure shows the copper(II) center having an essentially square-pyramidal coordination geometry in which L with a pendant ferrocenyl (Fc) moiety and bpy show respective tridentate and bidentate modes of binding to the metal center. The complexes are redox active, showing a reversible cyclic voltammetric response of the Fc(+)-Fc couple near 0.5 V vs SCE and a quasi-reversible Cu(II)-Cu(I) couple near 0.0 V. Complexes 2-4 show binding affinity to calf thymus (CT) DNA, giving binding constant (K-b) values in the range of 4.2 x 10(4) to 2.5 x 10(5) M-1. Thermal denaturation and viscometric titration data suggest groove binding and/or a partial intercalative mode of binding of the complexes to CT DNA. The complexes show good binding propensity to the bovine serum albumin (BSA) protein, giving K-BSA values of similar to 10(4) M-1 for the bpy and phen complexes and similar to 10(5) M-1 for the dpq and dppz complexes. Complexes 2-4 exhibit efficient chemical nuclease activity in the presence of 3-mercapto-propionic acid (MPA) as a reducing agent or hydrogen peroxide (H2O2) as an oxidizing agent. Mechanistic studies reveal formation of hydroxyl radicals as the reactive species. The dpq and dppz complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to visible light of different wavelengths including red light using an argon-krypton mixed gas ion laser. Mechanistic investigations using various inhibitors reveal the fort-nation of hydroxyl radicals in the DNA photocleavage reactions. The dppz complex 4, which shows efficient photoioduced BSA cleavage activity, is a potent multifunctional model nuclease and protease in the chemistry of photodynamic therapy (PDT) of cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isolation and characterization of the products formed during the irreversible thermal denaturation of enzyme RNAase-A are described. RNAase-A, when maintained in aqueous solution at pH 7.0 and 70° for 2 h, gives soluble products which have been fractionated by gel filtration on Sephadex G-75 into four components. These components are designated RNAase-At1, RNAase-At2, RNAase-At3 and RNAase-At4 according to the order of their elution from Sephadex G-75. RNAase-At4 shows the same specific activity towards yeast RNA as native RNAase-A and is virtually indistinguishable from it by the physical methods employed. However, chromatography on CM-cellulose separates it into three components that show the same u.v. spectra and specific activity towards yeast RNA as native RNAase-A. RNAase-At1, RNAase-At2and RNAase-At3 are all structurally altered derivatives of RNAase-A and they exhibit low specific activity (5–10%) towards yeast RNA. In the presence of added S-protein, all these derivatives show greatly enhanced enzymic activity. RNAase-At1 and RNAase-At2 are polymers, covalently crosslinked by intermolecular disulfide bridges; whereas RNAase-At3 is a monomer. Physical studies such as 1H-n.m.r., sedimentation analysis, u.v. absorption spectra and CD spectra reveal that RNAase-At3 is a unfolded derivative of RNAase-A. However, it is seen to possess sufficient residual structure which gives rise to a low but easily detectable enzymic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The denaturation of β-lactoglobulin-A by heat and guanidine hydrochloride at pH 2 has been investigated. The effect of ethylene glycol on the thermal denaturation at this pH has also been studied. The conditions of the experiments have been chosen so as to eliminate complications arising out of disulfide interchange, changes in the degree of association of the protein during denaturation, and intermolecular aggregation. The physical parameters characterizing the denatured states of the protein which are produced by heat and guanidine hydrochloride have been determined. The thermodynamic parameters for these transitions have been estimated using a two-state hypothesis in each case. Both the physical and thermodynamic parameters indicate that the heat-denatured state of β-lactoglobulin-A retains about 15-20% of residual structure which is destroyed on adding guanidine hydrochloride.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The folding and stability of maltose binding protein (MBP) have been investigated as a function of pH and temperature by intrinsic tryptophan fluorescence, far- and near-UV circular dichroism, and high-sensitivity differential scanning calorimetric measurements. MBP is a monomeric, two-domain protein containing 370 amino acids. The protein is stable in the pH range of 4-10.5 at 25 degrees C. The protein exhibits reversible, two-state, thermal and guanidine hydrochloride-mediated denaturation at neutral pH. The thermostability of MBP is maximal at pH 6, with a Tm of 64.9 degrees C and a deltaHm of 259.7 kcal mol(-1). The linear dependence of deltaHm on Tm was used to estimate a value of deltaCp of 7.9 kcal mol(-1) K(-1) or 21.3 cal (mol of residue)(-1) K(-1). These values are higher than the corresponding deltaCp's for most globular proteins studied to date. However, the extrapolated values of deltaH and deltaS (per mole of residue) at 110 degrees C are similar to those of other globular proteins. These data have been used to show that the temperature at which a protein undergoes cold denaturation depends primarily on the deltaCp (per mol of residue) and that this temperature increases with an increase in deltaCp. The predicted decrease in stability of MBP at low temperatures was experimentally confirmed by carrying out denaturant-mediated unfolding studies at neutral pH at 2 and 28 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peanut Agglutinin (PNA) is a homotetrameric protein with a very unusual open quaternary structure. During denaturation, it first dissociates into a molten globule like state, which subsequently undergoes complete denaturation. Urea denaturation of PNA at neutral pH has been studied by intrinsic fluorescence spectroscopy and has been fitted to a three state model, A(4) double left right arrow 4I double left right arrow 4U, to get all the relevant thermodynamic parameters. Urea denaturation leads to continuous red shift of wavelength maxima. The molten globule like state is formed in a short range of urea concentration. Refolding of the denatured PNA has been attempted by intrinsic fluorescence study. Refolding by instantaneous dilution shows the occurrence of the formation of an intermediate at a relatively rapid rate, within few seconds. The transition from PNA tetramer to molten globule like state is found to have a Delta G value of similar to 33 kcal/mole while it is similar to 8 kcal/mole for the transition from molten globule like state to a completely denatured state. This in turn indicates that the tetramerization in PNA contributes significantly to the stability of the oligomer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Circular dichroism studies have revealed that addition of testis specific protein, TP in vitro, to rat testes nucleosome core particle resulted in a decrease in the compaction of the core particle DNA. This was also corroborated by thermal denaturation analysis. Addition of TP to nucleosome core particle resulted in the conversion of a biphasic transition towards a single phase. However, at the same time there was a 20% reduction in the overall hyperchromicity of core particle DNA at core particle to TP molar ratios of 1:2 and 1:3. These observations along with our earlier report, showing the DNA melting properties of TP, suggest that TP may play an important role in the disassembly process of nucleosome core particle during spermiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maltose binding protein (MBP) is a large, monomeric two domain protein containing 370 amino acids. In the absence of denaturant at neutral pH, the protein is in the native state, while at pH 3.0 it forms a molten globule. The molten globule lacks a tertiary circular dichroism signal but has secondary structure similar to that of the native state. The molten globule binds 8-anilino-1-naphthalene sulfonate (ANS). The unfolding thermodynamics of MBP at both pHs were measured by carrying out a series of isothermal urea melts at temperatures ranging from 274–329 K. At 298 K, values of [Delta]G°, [Delta]Cp, and Cm were 3.1 ± 0.2 kcal mol−1, 5.9 ± 0.8 kcal mol−1 K−1 (15.9 cal (mol-residue)−1 K−1), and 0.8 M, respectively, at pH 3.0 and 14.5 ± 0.4 kcal mol−1, 8.3 ± 0.7 kcal mol−1 K−1 (22.4 kcal (mol-residue)−1 K−1), and 3.3 M, respectively, at pH 7.1. Guanidine hydrochloride denaturation at pH 7.1 gave values of [Delta]G° and [Delta]Cp similar to those obtained with urea. The m values for denaturation are strongly temperature dependent, in contrast to what has been previously observed for small globular proteins. The value of [Delta]Cp per mol-residue for the molten globule is comparable to corresponding values of [Delta]Cp for the unfolding of typical globular proteins and suggests that it is a highly ordered structure, unlike molten globules of many small proteins. The value of [Delta]Cp per mol-residue for the unfolding of the native state is among the highest currently known for any protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative antibody-free strategy for the rapid electrochemical detection of cardiac myoglobin has been demonstrated here using hydrothermally synthesized TiO2 nanotubes (Ti-NT). The denaturant induced unfolding of myoglobin led to easy access of the deeply buried electroactive heme center and thus the efficient reversible electron transfer from protein to electrode surface. The sensing performance of the Ti-NT modified electrodes were compared vis a vis commercially available titania and GCEs. The tubular morphology of the Ti-NT led to facile transfer of electrons to the electrode surface, which eventually provided a linear current response (obtained from cyclic voltammetry) over a wide range of Mb concentration. The sensitivity of the Ti-NT based sensor was remarkable and was equal to 18 mu A mg(-1) ml (detection limit = 50 nM). This coupled with the rapid analysis time of a few tens of minutes (compared to a few days for ELISA) demonstrates its potential usefulness for the early detection of acute myocardial infarction (AMI).