3 resultados para Promotions.

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the control aspects of a hierarchical organization under the influence of "proportionality" policies are analyzed. Proportionality policies are those that restrict the recruitment to every level of the hierarchy (except the bottom most level or base level) to be in strict proportion to the promotions into that level. Both long term and short term control analysis have been discussed. In long term control the specific roles of the parameters of the system with regard to control of the shape and size of the system have been analyzed and yield suitable control strategies. In short term control, the attainability of a target or goal structure within a specific time from a given initial structure has been analyzed and yields the required recruitment strategies. The theoretical analyses have been illustrated with computational examples and also with real world data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the control aspects of a hierarchical organization under the influence of "proportionality" policies are analyzed. Proportionality policies are those that restrict the recruitment to every level of the hierarchy (except the bottom most level or base level) to be in strict proportion to the promotions into that level. Both long term and short term control analysis have been discussed. In long term control the specific roles of the parameters of the system with regard to control of the shape and size of the system have been analyzed and yield suitable control strategies. In short term control, the attainability of a target or goal structure within a specific time from a given initial structure has been analyzed and yields the required recruitment strategies. The theoretical analyses have been illustrated with computational examples and also with real world data. The control of such proportionality systems is then compared with that of the general systems (which do not follow such policies) with some significant conclusions. The control relations of such proportionality systems are found to be simpler and more practically feasible than those of general Markov systems, which do not have such restrictions. Such proportionality systems thus not only retain and match the flexibility of general Markov systems but also have the added advantage of simpler and more practically feasible controls. The proportionality policies hence act as an alternative and more practicably feasible means of control. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our study concerns an important current problem, that of diffusion of information in social networks. This problem has received significant attention from the Internet research community in the recent times, driven by many potential applications such as viral marketing and sales promotions. In this paper, we focus on the target set selection problem, which involves discovering a small subset of influential players in a given social network, to perform a certain task of information diffusion. The target set selection problem manifests in two forms: 1) top-k nodes problem and 2) lambda-coverage problem. In the top-k nodes problem, we are required to find a set of k key nodes that would maximize the number of nodes being influenced in the network. The lambda-coverage problem is concerned with finding a set of k key nodes having minimal size that can influence a given percentage lambda of the nodes in the entire network. We propose a new way of solving these problems using the concept of Shapley value which is a well known solution concept in cooperative game theory. Our approach leads to algorithms which we call the ShaPley value-based Influential Nodes (SPINs) algorithms for solving the top-k nodes problem and the lambda-coverage problem. We compare the performance of the proposed SPIN algorithms with well known algorithms in the literature. Through extensive experimentation on four synthetically generated random graphs and six real-world data sets (Celegans, Jazz, NIPS coauthorship data set, Netscience data set, High-Energy Physics data set, and Political Books data set), we show that the proposed SPIN approach is more powerful and computationally efficient. Note to Practitioners-In recent times, social networks have received a high level of attention due to their proven ability in improving the performance of web search, recommendations in collaborative filtering systems, spreading a technology in the market using viral marketing techniques, etc. It is well known that the interpersonal relationships (or ties or links) between individuals cause change or improvement in the social system because the decisions made by individuals are influenced heavily by the behavior of their neighbors. An interesting and key problem in social networks is to discover the most influential nodes in the social network which can influence other nodes in the social network in a strong and deep way. This problem is called the target set selection problem and has two variants: 1) the top-k nodes problem, where we are required to identify a set of k influential nodes that maximize the number of nodes being influenced in the network and 2) the lambda-coverage problem which involves finding a set of influential nodes having minimum size that can influence a given percentage lambda of the nodes in the entire network. There are many existing algorithms in the literature for solving these problems. In this paper, we propose a new algorithm which is based on a novel interpretation of information diffusion in a social network as a cooperative game. Using this analogy, we develop an algorithm based on the Shapley value of the underlying cooperative game. The proposed algorithm outperforms the existing algorithms in terms of generality or computational complexity or both. Our results are validated through extensive experimentation on both synthetically generated and real-world data sets.