54 resultados para Proliferating Cell Nuclear Antigen

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arrest of proliferation is one of the prerequisites for differentiation of cytotrophoblasts into syncytiotrophoblasts, and thus during differentiation telomerase activity, as well as human telomerase reverse transcriptase (hTERT) expression, is down-regulated. Considering this, it is of interest to investigate whether syncytium formation can be delayed by prolonging the expression of telomerase in cytotrophoblasts. BeWo cells were transfected with pLPC-hTERT retroviral vector and the reverse transcription-polymerase chain reaction analysis for hTERT mRNA concentrations in the transfected cells revealed a several-fold increase in hTERT mRNA compared with the cells transfected with empty vector, and this confirmed that the transfection was successful. An increase in the proliferation, as assessed by bromodeoxyuridine incorporation assay, as well as an increase in mRNA and protein concentration of various cyclins and proliferating cell nuclear antigen, was noticed. The effect of hTERT transfection was also assessed after the addition of forskolin to induce differentiation and it was observed that cellcell fusion was delayed and differentiation did not occur in hTERT-transfected cells. However, the effects seen were only transient as stable transfection was not possible and the cells were undergoing apoptosis after 72 h, which suggested that apart from hTERT other factors might be important for immortalization of BeWo cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The silk gland of Bombyx mori is a terminally differentiated tissue in which DNA replication continues without cell or nuclear division during larval development. DNA polymerase-delta activity increases in the posterior and middle silk glands during the development period, reaching maximal levels in the middle of the fifth instar larvae. The enzyme has been purified to homogeneity by a series of column chromatographic and affinity purification steps. It is a multimer comprising of three heterogeneous subunits, M(r) 170,000, 70,000, and 42,000. An auxiliary protein from B. mori silk glands, analogous to the proliferating cell nuclear antigen, enhances the processivity of the enzyme and stimulates catalytic activity by 3-fold. This auxiliary protein has also been purified to homogeneity. It is a dimer comprised of a single type M(r) 40,000 subunit. Polymerase-delta possesses an intrinsic 3' --> 5' exonuclease activity which participates in proofreading by mismatch match repair during DNA synthesis and is devoid of any primase activity. DNA polymerase-delta activity could be further distinguished from polymerase-alpha from the same tissue based on its sensitivity to various inhibitors and polyclonal antibodies to the individual enzymes. Like DNA polymerase-alpha, polymerase-delta is also tightly associated with the nuclear matrix. The polymerase alpha-primase complex could be readily separated from polymerase-delta (exonuclease) in the purification protocol adopted. DNA polymerase-delta from B. mori silk glands resembles the mammalian delta-polymerases. Considering that both DNA polymerase-delta and -alpha are present in nearly equal amounts in this highly replicative tissue and their close association with the nuclear matrix, the involvement of both the enzymes in the chromosomal endoreplication process in B. mori is strongly implicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The silk gland of Bombyx mori, an endomitotically replicative tissue shows high levels of DNA polymerases alpha, delta, and epsilon activities. The ratio of polymerase alpha to that of delta plus epsilon is maintained at 1.1 to 1.3 in both the posterior and middle silk glands for the entire duration of late larval development. The three activities copurify in the initial stages of fractionation through phosphocellulose and DE52 but polymerase alpha gets resolved from the others on hydroxylapatite column. Separation between polymerase delta and epsilon is achieved by chromatography on QAE-Sephadex. DNA polymerase epsilon is a heterodimer comprising of 215- and 42-kDa subunits. The activity is maximum at pH 6.5 and the Km values for dNTPs vary between 3-9 microM. The enzyme possesses an intrinsically associated exonuclease activity which functions in the mismatch repair during DNA synthesis. Both polymerase and 3'-->5' exonuclease activities are associated with the 215-kDa subunit. By itself, DNA polymerase epsilon is processive and the catalytic activity is not enhanced by externally added bPCNA (Bombyx-proliferating cell nuclear antigen, an auxiliary protein for DNA polymerase delta). The enzyme resembles polymerase delta in having the exonuclease activity and in its response to aphidicolin or substrate analogs, but could be distinguished from the latter by its lack of response to the bPCNA and sensitivity to dimethyl sulfoxide. The two enzymes show partial immunological cross-reactivity with each other but no immunological relatedness to polymerase alpha. The absence of the repair enzyme DNA polymerase beta and the presence of substantial levels of polymerase epsilon in the silk glands suggest a possible role for the latter in DNA repair in that tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the crystal structure of the first prokaryotic aspartic proteinase-like domain identified in the genome of Mycobacterium tuberculosis. A search in the genomes of Mycobacterium species showed that the C-terminal domains of some of the PE family proteins contain two classic DT/SG motifs of aspartic proteinases with a low overall sequence similarity to HIV proteinase. The three-dimensional structure of one of them, Rv0977 (PE_PGRS16) of M. tuberculosis revealed the characteristic pepsinf-old and catalytic site architecture. However, the active site was completely blocked by the N-terminal His-tag. Surprisingly, the enzyme was found to be inactive even after the removal of the N-terminal His-tag. A comparison of the structure with pepsins showed significant differences in the critical substrate binding residues and in the flap tyrosine conformation that could contribute to the lack of proteolytic activity of Rv0977. (C) 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical Societies. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -kappa B (NF-kappa B) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

gamma delta T-cell receptor-bearing T cells (gamma delta T cells) are readily activated by intracellular bacterial pathogens such as Mycobacterium tuberculosis. The bacterial antigens responsible for gamma delta T-cell activation remain poorly characterized. We have found that heat treatment of live M. tuberculosis bacilli released into the supernatant an antigen which stimulated human gamma delta T cells, gamma delta T-cell activation was measured by determining the increase in percentage of gamma delta T cells by flow cytometry in peripheral blood mononuclear cells stimulated with antigen and by proliferation of gamma delta T-cell lines with monocytes as antigen-presenting cells. Supernatant from heat-treated M. tuberculosis was fractionated by fast-performance liquid chromatography (FPLC) on a Superose 12 column. Maximal gamma delta T-cell activation was measured for a fraction of 10 to 14 kDa. Separation of the supernatant by preparative isoelectric focusing demonstrated peak activity at a pi of <4.0. On two-dimensional gel electrophoresis, the 10- to 14-kDa FPLC fraction contained at least seven distinct molecules, of which two had a pi of <4.5. Protease treatment reduced the bioactivity of the 10- to 14-kDa FPLC fraction for both resting and activated gamma delta T cells. Murine antibodies raised to the 10- to 14-kDa fraction reacted by enzyme-linked immunosorbent assay with antigens of 10 to 14 kDa in lysate of M. tuberculosis. In addition, gamma delta T cells proliferated in response to an antigen of 10 to 14 kDa present in M. tuberculosis lysate. gamma delta T-cell-stimulating antigen was not found in culture filtrate of M. tuberculosis but was associated,vith the bacterial pellet and lysate of M. tuberculosis. These results provide a preliminary characterization of a 10- to 14-kDa, cell-associated, heat-stable, low-pI protein antigen of M. tuberculosis which is a major stimulus for human gamma delta T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/ 2-NF-kappa B signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractionation of nuclear extracts from posterior silk glands of mulberry silkworm Bombyx mori. resolved the transcription factor TFIIIC into two components (designated here as TFIIIC and TFIIIC1) as in HeLa cell nuclear extracts. The reconstituted transcription of tRNA genes required the presence of both components. The affinity purified TFIIIC is a heteromeric complex comprising of five subunits ranging from 44 to 240 kDa. Of these, the 51-kDa subunit could be specifically crosslinked to the B box of tRNA(1)(Gly). Purified swTFIIIC binds to the B box sequences with an affinity in the same range as of yTFIIIC or hTFIIIC2. Although an histone acetyl transferase (HAT) activity was associated with the TFIIIC fractions during the initial stages of purification. the HAT activity, unlike the human TFIIIC preparations, was separated at the final DNA affinity step. The tRNA transcription from DNA template was independent of HAT activity but the repressed transcription from chromatin template could be partially restored by external supplementation of the dissociated HAT activity. This is the first report on the purification and characterization of TFIIIC from insect systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma evansi is a causative agent of `surra', a common haemoprotozoan disease of livestock in India causing high morbidity and mortality in disease endemic areas. The proteinases released by live and dead trypanosomes entail immunosuppression in the infected host, which immensely contribute in disease pathogenesis. Cysteine proteinases are identified in the infectious cycle of trypanosomes such as cruzain from Trypanosoma cruzi, rhodesain or brucipain from Trypanosoma brucei rhodesiense and congopain from Trypanosoma congelense. These enzymes localised in lysosome-like organelles, flagellar pocket and on cell surface, which play a critical role in the life cycle of protozoan parasites, viz. in host invasion, nutrition and alteration of the host immune response. The paper describes the identification of cysteine proteinases of T. evansi lysate, activity profile at different pH optima and inhibition pattern using a specific inhibitor, besides the polypeptide profile of an antigen. Eight proteinases of T. evansi were identified in the molecular weight (MW) ranges of 28-170 kDa using gelatin substrate-polyacrylamide gel electrophoresis (GS-PAGE), and of these proteinases, six were cysteine proteinases, as they were inhibited by L-3-carboxy-2,3-transepoxypropionyl-lecuylamido (4-guanidino)-butane (E-64), a specific inhibitor. These proteolytic enzymes were most reactive in acidic pH between 3.0 and 5.5 in the presence of dithiothreitol and completely inactive at alkaline pH 10.0. Similarly, the GS-PAGE profile of the serum samples of rats infected with T. evansi revealed strong proteolytic activity only at the 28-kDa zone at pH 5.5, while no proteolytic activity was observed in serum samples of uninfected rats. Further, the other zones of clearance, which were evident in T. evansi antigen zymogram, could not be observed in the serum samples of rats infected with T. evansi. The polypeptide pattern of the whole cell lysate antigen revealed 12-15 polypeptide bands ranging from 28 to 81 kDa along with five predominant polypeptides bands (MW of 81, 66, 62, 55 and 45 kDa), which were immunoreactive with hyperimmune serum (HIS) and serum of experimentally infected rabbits with T. evansi infection. The immunoblot recognised antibodies in experimentally infected rabbits and against HIS as well, corresponding to the zone of clearances at lower MW ranges (28-41 kDa), which may be attributed to the potential of these proteinases in the diagnosis of T. evansi infection. Since these thiol-dependent enzymes are most active in acidic pH and considering their inhibition characteristics, these data suggest that they resemble to the mammalian lysosomal cathepsin B and L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma evansi is the most extensively distributed trypanosome responsible for disease called surra in livestock in many countries including frequent outbreaks in India. The prevalence of this disease is most commonly reported by standard parasitological detection methods (SPDM); however, antibody ELISA is being in practice by locally produced whole cell lysate (WCL) antigens in many countries. In the present investigation, we attempted to identify and purify immuno dominant, infection specific trypanosome antigens from T. evansi proteome using experimentally infected equine serum by immuno blot. Three immuno dominant clusters of proteins i.e. 62-66 kDa, 52-55 kDa and 41-43 kDa were identified based on their consistent reactivity with donkey sequential serum experimentally infected T. evansi up to 280 days post infection (dpi). The protein cluster of 62-66 kDa was purified in bulk in native form and comparatively evaluated with whole cell lysate antigen (WCL). ELISA and immuno blot showed that polypeptide of this cluster is 100% sensitive in detection of early and chronic infection. Further, this protein cluster was also found immuno reactive against hyper immune serum raised against predominantly 66 kDa exo antigen, revealed that this is a common immunodominant moieties in proteome and secretome of T. evansi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth. 10.1111/(ISSN)1469-8137

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present immuno-diagnostic method using soluble antigens from whole cell lysate antigen for trypanosomosis have certain inherent problems like lack of standardized and reproducible antigens, as well as ethical issues due to in vivo production, that could be alleviated by in vitro production. In the present study we have identified heat shock protein 70 (HSP70) from T. evansi proteome. The nucleotide sequence of T. evansi HSP70 was 2116 bp, which encodes 690 amino acid residues. The phylogenetic analysis of T. evansi HSP70 showed that T. evansi occurred within Trypanosoma clade and is most closely related to T. brucei brucei and T. brucei gambiense, whereas T. congolense HSP70 laid in separate clade. The two partial HSP70 sequences (HSP-1 from N-terminal region and HSP-2 from C-terminal region) were expressed and evaluated as diagnostic antigens using experimentally infected equine serum samples. Both recombinant proteins detected antibody in immunoblot using serum samples from experimental infected donkeys with T. evansi. Recombinant HSP-2 showed comparable antibody response to Whole cell lysate (WCL) antigen in immunoblot and ELISA. The initial results indicated that HSP70 has potential to detect the T. evansi infection and needs further validation on large set of equine serum samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Live recombinant Saccharomyces cerevisiae yeast expressing the envelope antigen of Japanese encephalitis virus (JEV) on the outer mannoprotein layer of the cell wall were examined for their ability to induce antigen-specific antibody responses in mice. When used as a modelantigen, parenteral immunization of mice with surface-expressing GFP yeast induced a strong anti-GFP antibody response in the absence of adjuvants. This antigen delivery approach was then used for a more stringent system, such as the envelope protein of JEV, which is a neurotropic virus requiring neutralizing antibodies for protection.Although 70% of cells were detected to express the total envelope protein on the surface by antibodies raised to the bacterially expressed protein, polyclonal anti-JEV antibodies failed to react with them. In marked contrast, yeast expressing the envelope fragments 238-398, 373-399 and 373-500 in front of a Gly-Ser linker were detected by anti-JEV antibodies as well as a monoclonal antibody but not by antibodies raised to the bacterially expressed protein. Immunization of mice with these surface-expressing recombinants resulted in a strong antibody response. However, the antibodies failed to neutralize the virus, although the fragments were selected based on neutralizing determinants.