9 resultados para Prof. Sharon

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work grew out of an attempt to understand a conjectural remark made by Professor Kyoji Saito to the author about a possible link between the Fox-calculus description of the symplectic structure on the moduli space of representations of the fundamental group of surfaces into a Lie group and pairs of mutually dual sets of generators of the fundamental group. In fact in his paper [3] , Prof. Kyoji Saito gives an explicit description of the system of dual generators of the fundamental group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

India is the midst of oil crisis.Many long term solution have been suggested.The question that is being asked is: can something be done immediately? Prof. A.K.N Reddy, who leads the group on the application of science & Techonology to rural area at the Indian Institute of Science has come with simple solutions which appears to well within our present technological capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Administration of rabbit antiserum to ovine luteinizing hormone to immature hamsters and guinea-pigs resulted in a significant decrease in the weights of testes, seminal vesicle and ventral prostate. The author wishes to thank Prof. N.R. Moudgal for his interest and Family Planning Foundation for financial assistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isothermal titration calorimetry measurements of the binding of 2′-fucosyllactose, lactose, N-acetyllactosamine, galactopyranose, 2-acetamido-2-deoxygalactopyranoside, methyl α-N-dansylgalactosaminide (Me-α-DNS-GalN), methyl α-D-galactopyranoside, methyl β-D-galactopyranoside, and fucose to Erythrina corallodendron lectin (ECorL), a dimer with one binding site per subunit, were performed at 283-286 and 297-299 K. The site binding enthalpies, ΔHb, with the exception of Me-α-DNS-GalN, are the same at both temperatures and range from −47.1 ± 1.0 kJ mol−1 for N-acetyllactosamine to −4.4 ± 0.3 kJ mol−1 for fucose, and the site binding constants range from 3.82 ± 0.9 × 105 M−1 for Me-α-DNS-GalN at 283.2 K to 0.46 ± 0.05 × 103 M−1 for fucose at 297.2 K. The binding reactions are mainly enthalpically driven except for fucose and exhibit enthalpy-entropy compensation. The binding enthalpies of the disaccharides are about twice the binding enthalpies of the monosaccharides in contrast to concanavalin A where the binding enthalpies do not double for the disaccharides. Differential scanning calorimetry measurements show that denaturation of the ECorL dimer results in dissociation into its monomer subunits. The binding constants from the increase in denaturation temperature of ECorL in the presence of saccharides are in agreement with values from isothermal titration calorimetry results. The thermal denaturation of ECorL occurs around 333 K, well below the 344-360 K denaturation temperature of other legume lectins of similar size and tertiary structure, undoubtedly due to the difference in its quaternary structure relative to other legume lectins. This is also apparent from the independent unfolding of its two domains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A brief survey of the historical development of a photoelectrochemical solar cell is given. The principle and future of solar chargeable battery is compared with a wet and a dry type photovoltaic cell. A solar chargeable battery, with or without a membrane and with an aqueous solution or with solid-state electrolytes is discussed. A new unique type of configuration “Sharon-Schottky” junction solar cell is described which can be used either as a charger for any secondary batteries or could be used for photoelectrolysis of water. All these configurations and their relative merits are discussed. A review on the various semiconductors and types of solar chargeable batteries is made. Finally, a conclusion is drawn for future direction of research for developing an economically viable photoelectrochemical (PEC) solar cell based on either the principle of a solar charger (to charge a Ni---Cd battery or lead—acid battery) and/or solar chargeable battery with or without without a membrane. Some new innovative ideas for the preparation of materials is discussed. The entire discussion is geared towards answering a relevant question: what has gone wrong to result in the stagnation and failure in commercialization of a PEC based solar cell?