22 resultados para Process Model

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Government of India has announced the Greening India Mission (GIM) under the National Climate Change Action Plan. The Mission aims to restore and afforest about 10 mha over the period 2010-2020 under different sub-missions covering moderately dense and open forests, scrub/grasslands, mangroves, wetlands, croplands and urban areas. Even though the main focus of the Mission is to address mitigation and adaptation aspects in the context of climate change, the adaptation component is inadequately addressed. There is a need for increased scientific input in the preparation of the Mission. The mitigation potential is estimated by simply multiplying global default biomass growth rate values and area. It is incomplete as it does not include all the carbon pools, phasing, differing growth rates, etc. The mitigation potential estimated using the Comprehensive Mitigation Analysis Process model for the GIM for the year 2020 has the potential to offset 6.4% of the projected national greenhouse gas emissions, compared to the GIM estimate of only 1.5%, excluding any emissions due to harvesting or disturbances. The selection of potential locations for different interventions and species choice under the GIM must be based on the use of modelling, remote sensing and field studies. The forest sector provides an opportunity to promote mitigation and adaptation synergy, which is not adequately addressed in the GIM. Since many of the interventions proposed are innovative and limited scientific knowledge exists, there is need for an unprecedented level of collaboration between the research institutions and the implementing agencies such as the Forest Departments, which is currently non-existent. The GIM could propel systematic research into forestry and climate change issues and thereby provide global leadership in this new and emerging science.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two atmospheric inversions (one fine-resolved and one process-discriminating) and a process-based model for land surface exchanges are brought together to analyse the variations of methane emissions from 1990 to 2009. A focus is put on the role of natural wetlands and on the years 2000-2006, a period of stable atmospheric concentrations. From 1990 to 2000, the top-down and bottom-up visions agree on the time-phasing of global total and wetland emission anomalies. The process-discriminating inversion indicates that wetlands dominate the time-variability of methane emissions (90% of the total variability). The contribution of tropical wetlands to the anomalies is found to be large, especially during the post-Pinatubo years (global negative anomalies with minima between -41 and -19 Tg yr(-1) in 1992) and during the alternate 1997-1998 El-Nino/1998-1999 La-Nina (maximal anomalies in tropical regions between +16 and +22 Tg yr(-1) for the inversions and anomalies due to tropical wetlands between +12 and +17 Tg yr(-1) for the process-based model). Between 2000 and 2006, during the stagnation of methane concentrations in the atmosphere, the top-down and bottom-up approaches agree on the fact that South America is the main region contributing to anomalies in natural wetland emissions, but they disagree on the sign and magnitude of the flux trend in the Amazon basin. A negative trend (-3.9 +/- 1.3 Tg yr(-1)) is inferred by the process-discriminating inversion whereas a positive trend (+1.3 +/- 0.3 Tg yr(-1)) is found by the process model. Although processed-based models have their own caveats and may not take into account all processes, the positive trend found by the B-U approach is considered more likely because it is a robust feature of the process-based model, consistent with analysed precipitations and the satellite-derived extent of inundated areas. On the contrary, the surface-data based inversions lack constraints for South America. This result suggests the need for a re-interpretation of the large increase found in anthropogenic methane inventories after 2000.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research work, we introduce a novel approach for phase estimation from noisy reconstructed interference fields in digital holographic interferometry using an unscented Kalman filter. Unlike conventionally used unwrapping algorithms and piecewise polynomial approximation approaches, this paper proposes, for the first time to the best of our knowledge, a signal tracking approach for phase estimation. The state space model derived in this approach is inspired from the Taylor series expansion of the phase function as the process model, and polar to Cartesian conversion as the measurement model. We have characterized our approach by simulations and validated the performance on experimental data (holograms) recorded under various practical conditions. Our study reveals that the proposed approach, when compared with various phase estimation methods available in the literature, outperforms at lower SNR values (i.e., especially in the range 0-20 dB). It is demonstrated with experimental data as well that the proposed approach is a better choice for estimating rapidly varying phase with high dynamic range and noise. (C) 2014 Optical Society of America

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The broader goal of the research being described here is to automatically acquire diagnostic knowledge from documents in the domain of manual and mechanical assembly of aircraft structures. These documents are treated as a discourse used by experts to communicate with others. It therefore becomes possible to use discourse analysis to enable machine understanding of the text. The research challenge addressed in the paper is to identify documents or sections of documents that are potential sources of knowledge. In a subsequent step, domain knowledge will be extracted from these segments. The segmentation task requires partitioning the document into relevant segments and understanding the context of each segment. In discourse analysis, the division of a discourse into various segments is achieved through certain indicative clauses called cue phrases that indicate changes in the discourse context. However, in formal documents such language may not be used. Hence the use of a domain specific ontology and an assembly process model is proposed to segregate chunks of the text based on a local context. Elements of the ontology/model, and their related terms serve as indicators of current context for a segment and changes in context between segments. Local contexts are aggregated for increasingly larger segments to identify if the document (or portions of it) pertains to the topic of interest, namely, assembly. Knowledge acquired through such processes enables acquisition and reuse of knowledge during any part of the lifecycle of a product.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The existing models describing electrochemical phase formation involving both adsorption and a nucleation/growth process are modified. The limiting cases leading to the existing models are discussed. The characteristic features of the potentiostatic transients are presented. A generalization of the Avrami ansatz is given for two or more competitive irreversibly growing phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. The research work presented here is based on the processes of synthesizing multiple state mechanical devices carried out individually by ten engineering designers. The designers are asked to think aloud, while carrying out the synthesis. The ten design synthesis processes are video recorded, and the records are transcribed and coded for identifying activities occurring in the synthesis processes, as well as for identifying the inputs to and outputs from the activities. A mathematical representation for specifying multi-state design task is proposed. Further, a descriptive model capturing all the ten synthesis processes is developed and presented in this paper. This will be used to identify the outstanding issues to be resolved before a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives could be developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present a modified k - epsilon model capable of addressing turbulent weld-pool convection in a GMAW process, taking into account the morphology of the phase change interface during a Gas Metal Arc Welding (GMAW) process. A three-dimensional turbulence mathematical model has been developed to study the heat transfer and fluid flow within the weld pool by considering the combined effect of three driving forces, viz., buoyancy, Lorentz force and surface tension (Marangoni convection). Mass and energy transports by the droplets are considered through the thermal analysis of the electrode. The falling droplet's heat addition to the molten pool is considered to be a volumetric heat source distributed in an imaginary cylindrical cavity ("cavity model") within the weld pool. This nature of heat source distribution takes into account the momentum and the thermal, energy of the falling droplets. The numerically predicted weld pool dimensions both from turbulence and laminar models are then compared with the experimental post-weld results sectioned across the weld axis. The above comparison enables us to analyze the overall effects of turbulent convection on the nature of heat and fluid flow and hence on the weld pool shape/size during the arc welding processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new coupled approach is presented for modeling the hydrogen bubble evolution and engulfment during an aluminum alloy solidification process in a micro-scale domain. An explicit enthalpy scheme is used to model the solidification process which is coupled with a level-set method for tracking the hydrogen bubble evolution. The volume averaging techniques are used to model mass, momentum, energy and species conservation equations in the chosen micro-scale domain. The interaction between the solid, liquid and gas interfaces in the system have been studied. Using an order-of-magnitude study on growth rates of bubble and solid interfaces, a criterion is developed to predict bubble elongation which can occur during the engulfment phase. Using this model, we provide further evidence in support of a conceptual thought experiment reported in literature, with regard to estimation of final pore shape as a function of typical casting cooling rates. The results from the proposed model are qualitatively compared with in situ experimental observations reported in literature. The ability of the model to predict growth and movement of a hydrogen bubble and its subsequent engulfment by a solidifying front has been demonstrated for varying average cooling rates encountered in typical sand, permanent mold, and various casting processes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural stabilizing property of 2,2,2-trifluoroethanol (TFE) in peptides has been widely demonstrated, More recently, TFE has been shown to enhance secondary structure content in globular proteins, and to influence quaternary interactions in protein multimers. The molecular mechanisms by which TFE exerts its Influence on peptide and protein structures remain poorly understood. The present analysis integrates the known physical properties of TFE with a variety of experimental observations on the interaction of TFE with peptides and proteins and on the properties of fluorocarbons. Two features of TFE, namely the hydrophobicity of the trifluoromethyl group and the hydrogen bonding character (strong donor and poor acceptor), emerge as the most important factors for rationalising the observed effects of TFE. A model is proposed for TFE interaction with peptides which involves an initial replacement of the hydration shell by fluoroalcohol molecules, a process driven by apolar interactions and favourable entropy of dehydration. Subsequent bifurcated hydrogen-bond formation with peptide carbonyl groups, which leave intramolecular interactions unaffected, promotes secondary structure formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.