170 resultados para Prime rational functions
em Indian Institute of Science - Bangalore - Índia
Resumo:
A rotating beam finite element in which the interpolating shape functions are obtained by satisfying the governing static homogenous differential equation of Euler–Bernoulli rotating beams is developed in this work. The shape functions turn out to be rational functions which also depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. These rational functions yield the Hermite cubic when rotation speed becomes zero. The new element is applied for static and dynamic analysis of rotating beams. In the static case, a cantilever beam having a tip load is considered, with a radially varying axial force. It is found that this new element gives a very good approximation of the tip deflection to the analytical series solution value, as compared to the classical finite element given by the Hermite cubic shape functions. In the dynamic analysis, the new element is applied for uniform, and tapered rotating beams with cantilever and hinged boundary conditions to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
A unate function can easily be identified on a Karnaugh map from the well-known property that it cons ist s only ofess en ti al prime implicante which intersect at a common implicant. The additional property that the plot of a unate function F(x, ... XII) on a Karnaugh map should possess in order that F may also be Ivrealizable (n';:; 6) has been found. It has been sh own that the I- realizability of a unate function F corresponds to the ' compac tness' of the plot of F. No resort to tho inequalities is made, and no pre-processing such as positivizing and ordering of the given function is required.
Resumo:
In this paper we consider polynomial representability of functions defined over , where p is a prime and n is a positive integer. Our aim is to provide an algorithmic characterization that (i) answers the decision problem: to determine whether a given function over is polynomially representable or not, and (ii) finds the polynomial if it is polynomially representable. The previous characterizations given by Kempner (Trans. Am. Math. Soc. 22(2):240-266, 1921) and Carlitz (Acta Arith. 9(1), 67-78, 1964) are existential in nature and only lead to an exhaustive search method, i.e. algorithm with complexity exponential in size of the input. Our characterization leads to an algorithm whose running time is linear in size of input. We also extend our result to the multivariate case.
Resumo:
We prove that given a Hecke-Maass form f for SL(2, Z) and a sufficiently large prime q, there exists a primitive Dirichlet character chi of conductor q such that the L-values L(1/2, f circle times chi) and L(1/2, chi) do not vanish.
Resumo:
We present a generalization of the finite volume evolution Galerkin scheme [M. Lukacova-Medvid'ova,J. Saibertov'a, G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems, J. Comp. Phys. (2002) 183 533-562; M. Luacova-Medvid'ova, K.W. Morton, G. Warnecke, Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems, SIAM J. Sci. Comput. (2004) 26 1-30] for hyperbolic systems with spatially varying flux functions. Our goal is to develop a genuinely multi-dimensional numerical scheme for wave propagation problems in a heterogeneous media. We illustrate our methodology for acoustic waves in a heterogeneous medium but the results can be generalized to more complex systems. The finite volume evolution Galerkin (FVEG) method is a predictor-corrector method combining the finite volume corrector step with the evolutionary predictor step. In order to evolve fluxes along the cell interfaces we use multi-dimensional approximate evolution operator. The latter is constructed using the theory of bicharacteristics under the assumption of spatially dependent wave speeds. To approximate heterogeneous medium a staggered grid approach is used. Several numerical experiments for wave propagation with continuous as well as discontinuous wave speeds confirm the robustness and reliability of the new FVEG scheme.
Resumo:
The hydrodynamic modes and the velocity autocorrelation functions for a dilute sheared inelastic fluid are analyzed using an expansion in the parameter epsilon=(1-e)(1/2), where e is the coefficient of restitution. It is shown that the hydrodynamic modes for a sheared inelastic fluid are very different from those for an elastic fluid in the long-wave limit, since energy is not a conserved variable when the wavelength of perturbations is larger than the ``conduction length.'' In an inelastic fluid under shear, there are three coupled modes, the mass and the momenta in the plane of shear, which have a decay rate proportional to k(2/3) in the limit k -> 0, if the wave vector has a component along the flow direction. When the wave vector is aligned along the gradient-vorticity plane, we find that the scaling of the growth rate is similar to that for an elastic fluid. The Fourier transforms of the velocity autocorrelation functions are calculated for a steady shear flow correct to leading order in an expansion in epsilon. The time dependence of the autocorrelation function in the long-time limit is obtained by estimating the integral of the Fourier transform over wave number space. It is found that the autocorrelation functions for the velocity in the flow and gradient directions decay proportional to t(-5/2) in two dimensions and t(-15/4) in three dimensions. In the vorticity direction, the decay of the autocorrelation function is proportional to t(-3) in two dimensions and t(-7/2) in three dimensions.
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
There have been major advances in the past couple of years in the rational synthesis of inorganic solids: synthesis of mercury-based superconducting cuprates showing transition temperatures up to 150 K; ZrP2-xVxO7 solid solutions showing zero or negative thermal expansion; copper oxides possessing ladder structures such as La1-xSrxCuO2.5; synthesis of mesoporous oxide materials having adjustable pore size in the range 15-100 Angstrom; and synthesis of a molecular ferromagnet showing a critical temperature of 18.6 K. Despite great advances in probing the structures of solids and measurement of their physical properties, the design and synthesis of inorganic solids possessing desired structures and properties remain a challenge today. With the availability of a variety of mild chemistry-based approaches, kinetic control of synthetic pathways is becoming increasingly possible, which, it is hoped, will eventually make rational design of inorganic solids a reality.
Resumo:
The literature contains many examples of digital procedures for the analytical treatment of electroencephalograms, but there is as yet no standard by which those techniques may be judged or compared. This paper proposes one method of generating an EEG, based on a computer program for Zetterberg's simulation. It is assumed that the statistical properties of an EEG may be represented by stationary processes having rational transfer functions and achieved by a system of software fillers and random number generators.The model represents neither the neurological mechanism response for generating the EEG, nor any particular type of EEG record; transient phenomena such as spikes, sharp waves and alpha bursts also are excluded. The basis of the program is a valid ‘partial’ statistical description of the EEG; that description is then used to produce a digital representation of a signal which if plotted sequentially, might or might not by chance resemble an EEG, that is unimportant. What is important is that the statistical properties of the series remain those of a real EEG; it is in this sense that the output is a simulation of the EEG. There is considerable flexibility in the form of the output, i.e. its alpha, beta and delta content, which may be selected by the user, the same selected parameters always producing the same statistical output. The filtered outputs from the random number sequences may be scaled to provide realistic power distributions in the accepted EEG frequency bands and then summed to create a digital output signal, the ‘stationary EEG’. It is suggested that the simulator might act as a test input to digital analytical techniques for the EEG, a simulator which would enable at least a substantial part of those techniques to be compared and assessed in an objective manner. The equations necessary to implement the model are given. The program has been run on a DEC1090 computer but is suitable for any microcomputer having more than 32 kBytes of memory; the execution time required to generate a 25 s simulated EEG is in the region of 15 s.
Resumo:
Following Ioffe's method of QCD sum rules the structure functions F2(x) for deep inelastic ep and en scattering are calculated. Valence u-quark and d-quark distributions are obtained in the range 0.1 less, approximate x <0.4 and compared with data. In the case of polarized targets the structure function g1(x) and the asymmetry Image Full-size image are calculated. The latter is in satisfactory agreement in sign and magnitude with experiments for x in the range 0.1< x < 0.4.
Resumo:
Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.
Resumo:
Recent work on the violent relaxation of collisionless stellar systems has been based on the notion of a wide class of entropy functions. A theorem concerning entropy increase has been proved. We draw attention to some underlying assumptions that have been ignored in the applications of this theorem to stellar dynamical problems. Once these are taken into account, the use of this theorem is at best heuristic. We present a simple counter-example.
Resumo:
A geometrical structure called the implied minterm structure (IMS) has been developed from the properties of minterms of a threshold function. The IMS is useful for the manual testing of linear separability of switching functions of up to six variables. This testing is done just by inspection of the plot of the function on the IMS.
Resumo:
Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green's function of a rectangular cavity with homogeneous boundary conditions. The rectangular chamber Green's function is expressed in terms of a finite number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that cannot be explained by the classical plane wave theory, are discussed.
Resumo:
The problem of learning correct decision rules to minimize the probability of misclassification is a long-standing problem of supervised learning in pattern recognition. The problem of learning such optimal discriminant functions is considered for the class of problems where the statistical properties of the pattern classes are completely unknown. The problem is posed as a game with common payoff played by a team of mutually cooperating learning automata. This essentially results in a probabilistic search through the space of classifiers. The approach is inherently capable of learning discriminant functions that are nonlinear in their parameters also. A learning algorithm is presented for the team and convergence is established. It is proved that the team can obtain the optimal classifier to an arbitrary approximation. Simulation results with a few examples are presented where the team learns the optimal classifier.