132 resultados para Prime Number Formula
em Indian Institute of Science - Bangalore - Índia
Resumo:
We describe a compiler for the Flat Concurrent Prolog language on a message passing multiprocessor architecture. This compiler permits symbolic and declarative programming in the syntax of Guarded Horn Rules, The implementation has been verified and tested on the 64-node PARAM parallel computer developed by C-DAC (Centre for the Development of Advanced Computing, India), Flat Concurrent Prolog (FCP) is a logic programming language designed for concurrent programming and parallel execution, It is a process oriented language, which embodies dataflow synchronization and guarded-command as its basic control mechanisms. An identical algorithm is executed on every processor in the network, We assume regular network topologies like mesh, ring, etc, Each node has a local memory, The algorithm comprises of two important parts: reduction and communication, The most difficult task is to integrate the solutions of problems that arise in the implementation in a coherent and efficient manner. We have tested the efficacy of the compiler on various benchmark problems of the ICOT project that have been reported in the recent book by Evan Tick, These problems include Quicksort, 8-queens, and Prime Number Generation, The results of the preliminary tests are favourable, We are currently examining issues like indexing and load balancing to further optimize our compiler.
Resumo:
The Cubic Sieve Method for solving the Discrete Logarithm Problem in prime fields requires a nontrivial solution to the Cubic Sieve Congruence (CSC) x(3) equivalent to y(2)z (mod p), where p is a given prime number. A nontrivial solution must also satisfy x(3) not equal y(2)z and 1 <= x, y, z < p(alpha), where alpha is a given real number such that 1/3 < alpha <= 1/2. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC. CSC can be parametrized as x equivalent to v(2)z (mod p) and y equivalent to v(3)z (mod p). In this paper, we give a deterministic polynomial-time (O(ln(3) p) bit-operations) algorithm to determine, for a given v, a nontrivial solution to CSC, if one exists. Previously it took (O) over tilde (p(alpha)) time in the worst case to determine this. We relate the CSC problem to the gap problem of fractional part sequences, where we need to determine the non-negative integers N satisfying the fractional part inequality {theta N} < phi (theta and phi are given real numbers). The correspondence between the CSC problem and the gap problem is that determining the parameter z in the former problem corresponds to determining N in the latter problem. We also show in the alpha = 1/2 case of CSC that for a certain class of primes the CSC problem can be solved deterministically in <(O)over tilde>(p(1/3)) time compared to the previous best of (O) over tilde (p(1/2)). It is empirically observed that about one out of three primes is covered by the above class. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The Hadwiger number eta(G) of a graph G is the largest integer n for which the complete graph K-n on n vertices is a minor of G. Hadwiger conjectured that for every graph G, eta(G) >= chi(G), where chi(G) is the chromatic number of G. In this paper, we study the Hadwiger number of the Cartesian product G square H of graphs. As the main result of this paper, we prove that eta(G(1) square G(2)) >= h root 1 (1 - o(1)) for any two graphs G(1) and G(2) with eta(G(1)) = h and eta(G(2)) = l. We show that the above lower bound is asymptotically best possible when h >= l. This asymptotically settles a question of Z. Miller (1978). As consequences of our main result, we show the following: 1. Let G be a connected graph. Let G = G(1) square G(2) square ... square G(k) be the ( unique) prime factorization of G. Then G satisfies Hadwiger's conjecture if k >= 2 log log chi(G) + c', where c' is a constant. This improves the 2 log chi(G) + 3 bound in [2] 2. Let G(1) and G(2) be two graphs such that chi(G1) >= chi(G2) >= clog(1.5)(chi(G(1))), where c is a constant. Then G1 square G2 satisfies Hadwiger's conjecture. 3. Hadwiger's conjecture is true for G(d) (Cartesian product of G taken d times) for every graph G and every d >= 2. This settles a question by Chandran and Sivadasan [2]. ( They had shown that the Hadiwger's conjecture is true for G(d) if d >= 3).
Resumo:
Let I be an m-primary ideal of a Noetherian local ring (R, m) of positive dimension. The coefficient e(1)(I) of the Hilbert polynomial of an I-admissible filtration I is called the Chern number of I. A formula for the Chern number has been derived involving the Euler characteristic of subcomplexes of a Koszul complex. Specific formulas for the Chern number have been given in local rings of dimension at most two. These have been used to provide new and unified proofs of several results about e(1)(I).
Resumo:
The thermoacoustic prime mover (TAPM) has gained considerable attention as a pressure wave generator to drive pulse tube refrigerator (PTR) due to no moving parts, reasonable efficiency, use of environmental friendly working fluids etc. To drive PTCs, lower frequencies (f) with larger pressure amplitudes (Delta P) are essential, which are affected by geometric and operating parameters of TAPM as well as working fluids. For driving PTRs, a twin standing wave TAPM is built and studied by using different working fluids such as helium, argon, nitrogen and their binary mixtures. Simulation results of DeltaEc are compared with experimental data wherever possible. DeltaEc predicts slightly increased resonance frequencies, but gives larger Delta P and lower temperature difference Delta T across stack. High mass number working fluid leads to lower frequency with larger Delta P, but higher Delta T. Studies indicate that the binary gas mixture of right composition with lower Delta T can be arrived at to drive TAPM of given geometry. (C) 2013 Elsevier Ltd and IIR. All rights reserved.
Resumo:
In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids, we have carried out a computer ''experiment'' where a random dipolar lattice was generated by quenching only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was orientationally disordered and positionally random. The detailed study of orientational relaxation in this random dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particular, we found that the relaxation of the collective orientational correlation functions at the intermediate wave numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the important role of the translational modes in this regime, as predicted recently by the molecular theories. The single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long times, compared to those of the dipolar liquid.
Resumo:
Doppler weather radars with fast scanning rates must estimate spectral moments based on a small number of echo samples. This paper concerns the estimation of mean Doppler velocity in a coherent radar using a short complex time series. Specific results are presented based on 16 samples. A wide range of signal-to-noise ratios are considered, and attention is given to ease of implementation. It is shown that FFT estimators fare poorly in low SNR and/or high spectrum-width situations. Several variants of a vector pulse-pair processor are postulated and an algorithm is developed for the resolution of phase angle ambiguity. This processor is found to be better than conventional processors at very low SNR values. A feasible approximation to the maximum entropy estimator is derived as well as a technique utilizing the maximization of the periodogram. It is found that a vector pulse-pair processor operating with four lags for clear air observation and a single lag (pulse-pair mode) for storm observation may be a good way to estimate Doppler velocities over the entire gamut of weather phenomena.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Kac-Akhiezer formula for finite section normal Wiener-Hopf integral operators is proved. This is an extension of the corresponding result for symmetric operator [2, 3, 4, 5, 6, 7].
Resumo:
The number of two-line and three-line Latin rectangles is obtained by recursive methods in a setting slightly more general than usually considered. We show how this leads to a generalisation which is proved elsewhere.
Resumo:
tRNA isolated from escherichia-coli grown in a medium containing [75Se] sodium selenosulfate was converted to nucleosides and analysed for selenonucleosides on a phosphocellulose column. Upon chromatography of the nucleosides on phosphocellulose column, the radioactivity resolved into three peaks. The first peak consisted of free selenium and traces of undigested nucleotides. The second peak was identified as 4-selenouridine by co-chromatographing with an authentic sample of 4-selenouridine. The identity of the third peak was not established. The second and third peaks represented 93% and 7% of the selenium present in nucleosides respectively.
Resumo:
A formula has been derived for the mean-square error in the phases of crystal reflections determined through the multiwavelength anomalous scattering method. The error is written in terms of a simple function of the positions in the complex plane of the 'centres' corresponding to the different wavelengths. For the case of three centres, the mean-square error is inversely proportional to the area of the triangle formed by them. The theoretical values are in good agreement with those obtained by earlier workers from computer simulations. The present method makes it easier to optimize the number and the actual wavelengths to be employed in the multiwavelength method. The maximum benefits of this method are expected in experiments employing synchrotron radiation or neutrons.
Resumo:
tRNA isolated from . grown in a medium containing [75Se] sodium selenosulfate was converted to nucleosides and analysed for selenonucleosides on a phosphocellulose column. Upon chromatography of the nucleosides on phosphocellulose column, the radioactivity resolved into three peaks. The first peak consisted of free selenium and traces of undigested nucleotides. The second peak was identified as 4-selenouridine by co-chromatographing with an authentic sample of 4-selenouridine. The identity of the third peak was not established. The second and third peaks represented 93% and 7% of the selenium present in nucleosides respectively.