9 resultados para Primary visual cortex
em Indian Institute of Science - Bangalore - Índia
Resumo:
Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors-phase consistency as well as amplitude covariation across trials-but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over-or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.
Resumo:
In this paper we propose a hypothetical scheme for recognizing the alphanumerics. The scheme is based on the known physiological structure of the visual cortex and the concept of a short Lino extractor nouron (SLEN). We assumo four basic typca of such units for extracting vertical, horizontal, right and left inclined straight line segments. The patterns reconstructed from the scheme show perfect agreement with the test patterns. The model indicates that the recognition of letters T and H requires extraction of the largest number of features.
Resumo:
Our everyday visual experience frequently involves searching for objects in clutter. Why are some searches easy and others hard? It is generally believed that the time taken to find a target increases as it becomes similar to its surrounding distractors. Here, I show that while this is qualitatively true, the exact relationship is in fact not linear. In a simple search experiment, when subjects searched for a bar differing in orientation from its distractors, search time was inversely proportional to the angular difference in orientation. Thus, rather than taking search reaction time (RT) to be a measure of target-distractor similarity, we can literally turn search time on its head (i.e. take its reciprocal 1/RT) to obtain a measure of search dissimilarity that varies linearly over a large range of target-distractor differences. I show that this dissimilarity measure has the properties of a distance metric, and report two interesting insights come from this measure: First, for a large number of searches, search asymmetries are relatively rare and when they do occur, differ by a fixed distance. Second, search distances can be used to elucidate object representations that underlie search - for example, these representations are roughly invariant to three-dimensional view. Finally, search distance has a straightforward interpretation in the context of accumulator models of search, where it is proportional to the discriminative signal that is integrated to produce a response. This is consistent with recent studies that have linked this distance to neuronal discriminability in visual cortex. Thus, while search time remains the more direct measure of visual search, its reciprocal also has the potential for interesting and novel insights. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Simultaneous recordings of spike trains from multiple single neurons are becoming commonplace. Understanding the interaction patterns among these spike trains remains a key research area. A question of interest is the evaluation of information flow between neurons through the analysis of whether one spike train exerts causal influence on another. For continuous-valued time series data, Granger causality has proven an effective method for this purpose. However, the basis for Granger causality estimation is autoregressive data modeling, which is not directly applicable to spike trains. Various filtering options distort the properties of spike trains as point processes. Here we propose a new nonparametric approach to estimate Granger causality directly from the Fourier transforms of spike train data. We validate the method on synthetic spike trains generated by model networks of neurons with known connectivity patterns and then apply it to neurons limultaneously recorded from the thalamus and the primary somatosensory cortex of a squirrel monkey undergoing tactile stimulation.
Resumo:
Characterizing the functional connectivity between neurons is key for understanding brain function. We recorded spikes and local field potentials (LFPs) from multielectrode arrays implanted in monkey visual cortex to test the hypotheses that spikes generated outward-traveling LFP waves and the strength of functional connectivity depended on stimulus contrast, as described recently. These hypotheses were proposed based on the observation that the latency of the peak negativity of the spike-triggered LFP average (STA) increased with distance between the spike and LFP electrodes, and the magnitude of the STA negativity and the distance over which it was observed decreased with increasing stimulus contrast. Detailed analysis of the shape of the STA, however, revealed contributions from two distinct sources-a transient negativity in the LFP locked to the spike (similar to 0 ms) that attenuated rapidly with distance, and a low-frequency rhythm with peak negativity similar to 25 ms after the spike that attenuated slowly with distance. The overall negative peak of the LFP, which combined both these components, shifted from similar to 0 to similar to 25 ms going from electrodes near the spike to electrodes far from the spike, giving an impression of a traveling wave, although the shift was fully explained by changing contributions from the two fixed components. The low-frequency rhythm was attenuated during stimulus presentations, decreasing the overall magnitude of the STA. These results highlight the importance of accounting for the network activity while using STAs to determine functional connectivity.
Resumo:
In this paper, we give a brief review of pattern classification algorithms based on discriminant analysis. We then apply these algorithms to classify movement direction based on multivariate local field potentials recorded from a microelectrode array in the primary motor cortex of a monkey performing a reaching task. We obtain prediction accuracies between 55% and 90% using different methods which are significantly above the chance level of 12.5%.
Resumo:
Primary microcephaly is an autosomal recessive disorder characterized by smaller than normal brain size and mental retardation. It is genetically heterogeneous with seven loci: MCPH1-MCPH7. We have previously reported genetic analysis of 35 families, including the identification of the MCPH7 gene STIL. Of the 35 families, three families showed linkage to the MCPH2 locus. Recent whole-exome sequencing studies have shown that the WDR62 gene, located in the MCPH2 candidate region, is mutated in patients with severe brain malformations. We therefore sequenced the WDR62 gene in our MCPH2 families and identified two novel homozygous protein truncating mutations in two families. Affected individuals in the two families had pachygyria, microlissencephaly, band heterotopias, gyral thickening, and dysplastic cortex. Using immunofluorescence study, we showed that, as with other MCPH proteins, WDR62 localizes to centrosomes in A549, HepG2, and HaCaT cells. In addition, WDR62 was also localized to nucleoli. Bioinformatics analysis predicted two overlapping nuclear localization signals and multiple WD-40 repeats in WDR62. Two other groups have also recently identified WDR62 mutations in MCPH2 families. Our results therefore add further evidence that WDR62 is the MCPH2 gene. The present findings will be helpful in genetic diagnosis of patients linked to the MCPH2 locus.
Resumo:
Shape and texture are both important properties of visual objects, but texture is relatively less understood. Here, we characterized neuronal responses to discrete textures in monkey inferotemporal (IT) cortex and asked whether they can explain classic findings in human texture perception. We focused on three classic findings on texture discrimination: 1) it can be easy or hard depending on the constituent elements; 2) it can have asymmetries, and 3) it is reduced for textures with randomly oriented elements. We recorded neuronal activity from monkey inferotemporal (IT) cortex and measured texture perception in humans for a variety of textures. Our main findings are as follows: 1) IT neurons show congruent selectivity for textures across array size; 2) textures that were easy for humans to discriminate also elicited distinct patterns of neuronal activity in monkey IT; 3) texture pairs with asymmetries in humans also exhibited asymmetric variation in firing rate across monkey IT; and 4) neuronal responses to randomly oriented textures were explained by an average of responses to homogeneous textures, which rendered them less discriminable. The reduction in discriminability of monkey IT neurons predicted the reduced discriminability in humans during texture discrimination. Taken together, our results suggest that texture perception in humans is likely based on neuronal representations similar to those in monkey IT.