25 resultados para Pression intra-oculaire

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication within and across proteins is crucial for the biological functioning of proteins. Experiments such as mutational studies on proteins provide important information on the amino acids, which are crucial for their function. However, the protein structures are complex and it is unlikely that the entire responsibility of the function rests on only a few amino acids. A large fraction of the protein is expected to participate in its function at some level or other. Thus, it is relevant to consider the protein structures as a completely connected network and then deduce the properties, which are related to the global network features. In this direction, our laboratory has been engaged in representing the protein structure as a network of non-covalent connections and we have investigated a variety of problems in structural biology, such as the identification of functional and folding clusters, determinants of quaternary association and characterization of the network properties of protein structures. We have also addressed a few important issues related to protein dynamics, such as the process of oligomerization in multimers, mechanism on protein folding, and ligand induced communications (allosteric effect). In this review we highlight some of the investigations which we have carried out in the recent past. A review on protein structure graphs was presented earlier, in which the focus was on the graphs and graph spectral properties and their implementation in the study of protein structure graphs/networks (PSN). In this article, we briefly summarize the relevant parts of the methodology and the focus is on the advancement brought out in the understanding of protein structure-function relationships through structure networks. The investigations of structural/biological problems are divided into two parts, in which the first part deals with the analysis of PSNs based on static structures obtained from x-ray crystallography. The second part highlights the changes in the network, associated with biological functions, which are deduced from the network analysis on the structures obtained from molecular dynamics simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of transient mode locking for an active modulator in an intracavity frequency-doubled laser is presented. The theory is applied to mode-locked and intracavity frequency-doubled Nd:YAG laser and the mode-locked pulse width is plotted as a function of number of round trips inside the cavity. It is found that the pulse compression is faster and the system takes a very short time to approach the steady state in the presence of a second harmonic generating crystal inside the laser cavity. The effect of modulation depth and the second harmonic conversion efficiency on the temporal behavior of the pulse width is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiconductor with almost overlapping conduction bands b and c is considered. It is found that an attractive interaction leading to superconductivity can be induced between electrons in the conduction band b by a strong radiation field of monochromatic photons whose energy differs slightly from the band gap Ebc. The mechanism is the exchange of a photon and a phonon between the interacting electrons and the interaction is found to be proportional to the photon density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homodimeric protein tryptophanyl tRNA synthetase (TrpRS) has a Rossmann fold domain and belongs to the 1c subclass of aminoacyl tRNA synthetases. This enzyme performs the function of acylating the cognate tRNA. This process involves a number of molecules (2 protein subunits, 2 tRNAs and 2 activated Trps) and thus it is difficult to follow the complex steps in this process. Structures of human TrpRS complexed with certain ligands are available. Based on structural and biochemical data, mechanism of activation of Trp has been speculated. However, no structure has yet been solved in the presence of both the tRNA(Trp) and the activated Trp (TrpAMP). In this study, we have modeled the structure of human TrpRS bound to the activated ligand and the cognate tRNA. In addition, we have performed molecular dynamics (MD) simulations on these models as well as other complexes to capture the dynamical process of ligand induced conformational changes. We have analyzed both the local and global changes in the protein conformation from the protein structure network (PSN) of MD snapshots, by a method which was recently developed in our laboratory in the context of the functionally monomeric protein, methionyl tRNA synthetase. From these investigations, we obtain important information such as the ligand induced correlation between different residues of this protein, asymmetric binding of the ligands to the two subunits of the protein as seen in the crystal structure analysis, and the path of communication between the anticodon region and the aminoacylation site. Here we are able to elucidate the role of dimer interface at a level of detail, which has not been captured so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-ray structure and electron density distribution of ethane-1,2-diol (ethylene glycol), obtained at a resolution extending to 1.00 Å−1 in sin θ/λ (data completion = 100% at 100 K) by in situ cryocrystallization technique is reported. The diol is in the gauche (g′Gt) conformation with the crystal structure stabilised by a network of inter-molecular hydrogen bonds. In addition to the well-recognized O–H···O hydrogen bonds there is topological evidence for C–H···O inter-molecular interactions. There is no experimental electron density based topological evidence for the occurrence of an intra-molecular hydrogen bond. The O···H spacing is not, vert, similar0.45 Å greater than in the gas-phase with an O–H···O angle close to 90°, calling into question the general assumption that the gauche conformation of ethane-1,2-diol is stabilised by the intra-molecular oxygen–hydrogen interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper present an area optimized architecture for Intra prediction, for H.264 decoding at HDTV resolution with a target of achieving 60 fps. The architecture was validated on Virtex-5 FPGA based platform. The architecture achieves a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of Monte Carlo simulation of the phase diagram and oxygen ordering in YBa2Cu3O6+x for low intra-sublattice repulsion. At low temperatures, apart from tetragonal (T), orthorhombic (OI) and 'double cell' ortho II phases, there is evidence for two additional orthorhombic phases labelled here as OIBAR and OIII. At high temperatures, there was no evidence for the decomposition of the OI phase into the T and OI phases. We find qualitative agreement with experimental observations and cluster-variation method results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new speech enhancement approach, that is based on exploiting the intra-frame dependency of discrete cosine transform (DCT) domain coefficients. It can be noted that the existing enhancement techniques treat the transformdomain coefficients independently. Instead of this traditional approach of independently processing the scalars, we split the DCT domain noisy speech vector into sub-vectors and each sub-vector is enhanced independently. Through this sub-vector based approach, the higher dimensional enhancement advantage, viz. non-linear dependency, is exploited. In the developed method, each clean speech sub-vector is modeled using a Gaussian mixture (GM) density. We show that the proposed Gaussian mixture model (GMM) based DCT domain method, using sub-vector processing approach, provides better performance than the conventional approach of enhancing the transform domain scalar components independently. Performance improvement over the recently proposed GMM based time domain approach is also shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the feasibility of developing a comprehensive gate delay and slew models which incorporates output load, input edge slew, supply voltage, temperature, global process variations and local process variations all in the same model. We find that the standard polynomial models cannot handle such a large heterogeneous set of input variables. We instead use neural networks, which are well known for their ability to approximate any arbitrary continuous function. Our initial experiments with a small subset of standard cell gates of an industrial 65 nm library show promising results with error in mean less than 1%, error in standard deviation less than 3% and maximum error less than 11% as compared to SPICE for models covering 0.9- 1.1 V of supply, -40degC to 125degC of temperature, load, slew and global and local process parameters. Enhancing the conventional libraries to be voltage and temperature scalable with similar accuracy requires on an average 4x more SPICE characterization runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the feasibility of developing a comprehensive gate delay and slew models which incorporates output load, input edge slew, supply voltage, temperature, global process variations and local process variations all in the same model. We find that the standard polynomial models cannot handle such a large heterogeneous set of input variables. We instead use neural networks, which are well known for their ability to approximate any arbitrary continuous function. Our initial experiments with a small subset of standard cell gates of an industrial 65 nm library show promising results with error in mean less than 1%, error in standard deviation less than 3% and maximum error less than 11% as compared to SPICE for models covering 0.9- 1.1 V of supply, -40degC to 125degC of temperature, load, slew and global and local process parameters. Enhancing the conventional libraries to be voltage and temperature scalable with similar accuracy requires on an average 4x more SPICE characterization runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tie lines delineating ion-exchange equilibria between FeCr2O4FeAl2O4 spinel solid solution and Cr2O3Al2O3 solid solution with corundum structure have been determined at 1373 K by electron microprobe and EDAX point count analysis of oxide phases equilibrated with metallic iron. Activities in the spinel solid solution are derived from the tie lines and the thermodynamic data on Cr2O3Al2O3 solid solution available in the literature. The oxygen potentials corresponding to the tie-line composition of oxide phases in equilibrium with metallic iron were measured using solid oxide galvanic cells with CaOZrO2 and Y2O3ThO2 electrolytes. These electrochemical measurements also yield activities in the spinel solid solution, in good agreement with those obtained from tie lines. The activity-composition relationship in the spinel solid solution is analysed in terms of the intra-crystalline ion exchange between the tetrahedral and octahedral sites of the spinel structures. The ion exchange is governed by site-preference energies of the cations and the entropy of cations mixing on each site.